Medical Image Retrieval Based on Convolutional Neural Network and Supervised Hashing

散列函数 计算机科学 卷积神经网络 图像检索 模式识别(心理学) 人工智能 二进制代码 特征哈希 特征提取 特征(语言学) 哈希表 图像(数学) 双重哈希 二进制数 数学 算术 哲学 语言学 计算机安全
作者
Yiheng Cai,Yuanyuan Li,Changyan Qiu,Jie Ma,Xurong Gao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 51877-51885 被引量:87
标识
DOI:10.1109/access.2019.2911630
摘要

In recent years, with extensive application in image retrieval and other tasks, a convolutional neural network (CNN) has achieved outstanding performance. In this paper, a new content-based medical image retrieval (CBMIR) framework using CNN and hash coding is proposed. The new framework adopts a Siamese network in which pairs of images are used as inputs, and a model is learned to make images belonging to the same class have similar features by using weight sharing and a contrastive loss function. In each branch of the network, CNN is adapted to extract features, followed by hash mapping, which is used to reduce the dimensionality of feature vectors. In the training process, a new loss function is designed to make the feature vectors more distinguishable, and a regularization term is added to encourage the real value outputs to approximate the desired binary values. In the retrieval phase, the compact binary hash code of the query image is achieved from the trained network and is subsequently compared with the hash codes of the database images. We experimented on two medical image datasets: the cancer imaging archive-computed tomography (TCIA-CT) and the vision and image analysis group/international early lung cancer action program (VIA/I-ELCAP). The results indicate that our method is superior to existing hash methods and CNN methods. Compared with the traditional hashing method, feature extraction based on CNN has advantages. The proposed algorithm combining a Siamese network with the hash method is superior to the classical CNN-based methods. The application of a new loss function can effectively improve retrieval accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uniibooy完成签到 ,获得积分10
2秒前
文车完成签到,获得积分10
4秒前
4秒前
研友_X89o6n完成签到,获得积分10
14秒前
小青龙必胜完成签到,获得积分10
16秒前
Gj发布了新的文献求助10
16秒前
超级的班完成签到,获得积分10
16秒前
17秒前
jor666完成签到,获得积分10
17秒前
yukang完成签到,获得积分10
20秒前
tudouni发布了新的文献求助10
21秒前
无辜念文完成签到,获得积分10
21秒前
传奇3应助专注千琴采纳,获得30
22秒前
Vegeta完成签到 ,获得积分10
24秒前
华仔应助tudouni采纳,获得10
25秒前
如意蚂蚁完成签到,获得积分10
26秒前
柑橘完成签到 ,获得积分10
27秒前
27秒前
许愿完成签到 ,获得积分10
29秒前
echo完成签到 ,获得积分10
30秒前
大方虎完成签到 ,获得积分10
31秒前
独特的尔风完成签到,获得积分10
33秒前
tudouni完成签到,获得积分10
33秒前
SciGPT应助万灵竹采纳,获得10
34秒前
Felix完成签到,获得积分10
35秒前
快乐藤椒堡完成签到 ,获得积分10
37秒前
Joseph_LIN完成签到,获得积分10
39秒前
纪鹏飞完成签到,获得积分10
40秒前
40秒前
41秒前
弹指一挥间完成签到 ,获得积分10
42秒前
wgglegg完成签到,获得积分10
43秒前
步步发布了新的文献求助10
44秒前
wrr应助科研通管家采纳,获得10
44秒前
冰魂应助科研通管家采纳,获得10
44秒前
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
Gj完成签到,获得积分20
46秒前
46秒前
爆米花应助一北采纳,获得10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779363
求助须知:如何正确求助?哪些是违规求助? 3324881
关于积分的说明 10220321
捐赠科研通 3040066
什么是DOI,文献DOI怎么找? 1668529
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503