非阻塞I/O
材料科学
钙钛矿(结构)
氧化镍
光伏
电子束物理气相沉积
氧化物
氧化锡
光电子学
能量转换效率
光伏系统
钙钛矿太阳能电池
纳米技术
化学工程
化学气相沉积
冶金
兴奋剂
催化作用
电气工程
化学
工程类
生物化学
作者
Tobias Abzieher,Somayeh Moghadamzadeh,Fabian Schackmar,Helge Eggers,Florian Sutterlüti,Amjad Farooq,Danny Kojda,K. Habicht,Raphael Schmager,Adrian Mertens,Raheleh Azmi,Lukas Klohr,Jonas A. Schwenzer,M. Hetterich,Uli Lemmer,Bryce S. Richards,Michael Powalla,Ulrich W. Paetzold
标识
DOI:10.1002/aenm.201802995
摘要
Abstract High‐quality charge carrier transport materials are of key importance for stable and efficient perovskite‐based photovoltaics. This work reports on electron‐beam‐evaporated nickel oxide (NiO x ) layers, resulting in stable power conversion efficiencies (PCEs) of up to 18.5% when integrated into solar cells employing inkjet‐printed perovskite absorbers. By adding oxygen as a process gas and optimizing the layer thickness, transparent and efficient NiO x hole transport layers (HTLs) are fabricated, exhibiting an average absorptance of only 1%. The versatility of the material is demonstrated for different absorber compositions and deposition techniques. As another highlight of this work, all‐evaporated perovskite solar cells employing an inorganic NiO x HTL are presented, achieving stable PCEs of up to 15.4%. Along with good PCEs, devices with electron‐beam‐evaporated NiO x show improved stability under realistic operating conditions with negligible degradation after 40 h of maximum power point tracking at 75 °C. Additionally, a strong improvement in device stability under ultraviolet radiation is found if compared to conventional perovskite solar cell architectures employing other metal oxide charge transport layers (e.g., titanium dioxide). Finally, an all‐evaporated perovskite solar mini‐module with a NiO x HTL is presented, reaching a PCE of 12.4% on an active device area of 2.3 cm 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI