Skin Lesion Classification Using CNNs With Patch-Based Attention and Diagnosis-Guided Loss Weighting

加权 计算机科学 人工智能 背景(考古学) 过采样 增采样 班级(哲学) 模式识别(心理学) 灵敏度(控制系统) 图像(数学) 机器学习 放射科 带宽(计算) 古生物学 工程类 生物 医学 计算机网络 电子工程
作者
Nils Gessert,Thilo Sentker,Frederic Madesta,Rüdiger Schmitz,Helge Kniep,Ivo M. Baltruschat,René Werner,Alexander Schlaefer
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:67 (2): 495-503 被引量:140
标识
DOI:10.1109/tbme.2019.2915839
摘要

Objective: This work addresses two key problems of skin lesion classification. The first problem is the effective use of high-resolution images with pretrained standard architectures for image classification. The second problem is the high class imbalance encountered in real-world multi-class datasets. Methods: To use high-resolution images, we propose a novel patch-based attention architecture that provides global context between small, high-resolution patches. We modify three pretrained architectures and study the performance of patch-based attention. To counter class imbalance problems, we compare oversampling, balanced batch sampling, and class-specific loss weighting. Additionally, we propose a novel diagnosis-guided loss weighting method which takes the method used for ground-truth annotation into account. Results: Our patch-based attention mechanism outperforms previous methods and improves the mean sensitivity by 7%. Class balancing significantly improves the mean sensitivity and we show that our diagnosis-guided loss weighting method improves the mean sensitivity by 3% over normal loss balancing. Conclusion: The novel patch-based attention mechanism can be integrated into pretrained architectures and provides global context between local patches while outperforming other patch-based methods. Hence, pretrained architectures can be readily used with high-resolution images without downsampling. The new diagnosis-guided loss weighting method outperforms other methods and allows for effective training when facing class imbalance. Significance: The proposed methods improve automatic skin lesion classification. They can be extended to other clinical applications where high-resolution image data and class imbalance are relevant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilil完成签到,获得积分10
1秒前
满意溪流完成签到 ,获得积分10
1秒前
1111完成签到 ,获得积分10
2秒前
zho关闭了zho文献求助
2秒前
潇潇完成签到,获得积分10
2秒前
顾涵山发布了新的文献求助20
3秒前
Singularity发布了新的文献求助10
3秒前
kk完成签到,获得积分10
4秒前
鹤轸完成签到,获得积分10
4秒前
长情箴完成签到 ,获得积分10
6秒前
6秒前
7秒前
王富贵完成签到,获得积分10
7秒前
王通完成签到,获得积分10
9秒前
多乐多滋完成签到,获得积分10
11秒前
伊莎贝儿发布了新的文献求助10
11秒前
酶没美镁完成签到,获得积分10
12秒前
124完成签到,获得积分10
12秒前
Ym完成签到,获得积分10
14秒前
14秒前
HEIKU完成签到,获得积分0
16秒前
平常的毛豆应助aliu采纳,获得10
16秒前
LHZ完成签到 ,获得积分10
18秒前
无私的蛋挞完成签到,获得积分10
21秒前
菠萝包完成签到 ,获得积分10
23秒前
晚灯君完成签到 ,获得积分10
24秒前
过氧化氢应助DJ采纳,获得10
28秒前
luan完成签到 ,获得积分10
28秒前
sssssssssss完成签到,获得积分10
30秒前
十一玮完成签到,获得积分10
32秒前
yyy完成签到,获得积分10
33秒前
CipherSage应助Hommand_藏山采纳,获得10
33秒前
勤恳完成签到,获得积分10
35秒前
36秒前
哎咦随风起完成签到,获得积分10
37秒前
aliu完成签到,获得积分10
38秒前
小夜完成签到,获得积分10
39秒前
重明完成签到,获得积分10
45秒前
46秒前
小蘑菇应助Regulus.采纳,获得10
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351