ANNC: AUC-Based Feature Selection by Maximizing Nearest Neighbor Complementarity

判别式 计算机科学 互补性(分子生物学) 特征选择 k-最近邻算法 人工智能 成对比较 模式识别(心理学) 特征(语言学) 机器学习 数据挖掘 语言学 遗传学 生物 哲学
作者
Xuemeng Jiang,Jun Wang,Jinmao Wei,Jianhua Ruan,Gang Yu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 772-785
标识
DOI:10.1007/978-3-319-97304-3_59
摘要

Feature selection is crucial for dimension reduction. Dozens of approaches employ the area under ROC curve, i.e., AUC, to evaluate features, and have shown their attractiveness in finding discriminative targets. However, feature complementarity for jointly discriminating classes is generally improperly handled by these approaches. In a recent approach to deal with such issues, feature complementarity was evaluated by computing the difference between the neighbors of each instance in different feature dimensions. This local-learning based approach introduces a distinctive way to determine how a feature is complementarily discriminative given another. Nevertheless, neighbor information is usually sensitive to noises. Furthermore, evaluating merely one-side information of nearest misses will definitely neglect the impacts of nearest hits on feature complementarity. In this paper, we propose to integrate all-side local-learning based complementarity into an AUC-based approach, dubbed ANNC, to evaluate pairwise features by scrutinizing their comprehensive misclassification information in terms of both k-nearest misses and k-nearest hits. This strategy contributes to capture complementary features that collaborate with each other to achieve remarkable recognition performance. Extensive experiments on openly available benchmarks demonstrate the effectiveness of the new approach under various metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LioXH完成签到,获得积分10
刚刚
内向苡完成签到,获得积分10
刚刚
凯卮完成签到,获得积分10
1秒前
晶晶完成签到,获得积分10
2秒前
2秒前
zzl1111发布了新的文献求助10
2秒前
jin完成签到,获得积分10
3秒前
所所应助小白采纳,获得10
3秒前
LioXH发布了新的文献求助10
4秒前
小可爱完成签到,获得积分10
6秒前
Toread完成签到 ,获得积分10
6秒前
6秒前
期待未来的自己应助eureka采纳,获得10
7秒前
HYQ完成签到,获得积分10
9秒前
里埃尔塞因斯完成签到 ,获得积分10
10秒前
11秒前
希望天下0贩的0应助zzl1111采纳,获得10
11秒前
14秒前
CodeCraft应助高木同学采纳,获得10
15秒前
高级后勤完成签到,获得积分10
15秒前
Auston_zhong应助lsy采纳,获得10
15秒前
故酒应助张可采纳,获得10
15秒前
喵喵完成签到,获得积分10
16秒前
贾小闲完成签到,获得积分10
16秒前
研友_n0kjPL完成签到,获得积分0
18秒前
咕咕完成签到,获得积分10
18秒前
静静子完成签到,获得积分10
18秒前
tzjz_zrz完成签到,获得积分10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
20秒前
TARGET完成签到 ,获得积分10
20秒前
温暖的鸿完成签到 ,获得积分10
21秒前
皇帝的床帘完成签到,获得积分10
21秒前
海的海完成签到 ,获得积分10
21秒前
饱满的小懒虫完成签到,获得积分10
22秒前
温柔的沉鱼完成签到,获得积分10
23秒前
蓝豆子完成签到 ,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402612
捐赠科研通 3077262
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743