原子层沉积
钙钛矿(结构)
X射线光电子能谱
材料科学
化学工程
钙钛矿太阳能电池
手套箱
图层(电子)
纳米技术
化学
有机化学
工程类
作者
Dibyashree Koushik,Lotte van Hazendonk,Valerio Zardetto,Vincent Vandalon,Marcel A. Verheijen,W. M. M. Kessels,Mariadriana Creatore
标识
DOI:10.1021/acsami.8b18307
摘要
Ultrathin metal oxides prepared by atomic layer deposition (ALD) have gained utmost attention as moisture and thermal stress barrier layers in perovskite solar cells (PSCs). We have recently shown that 10 cycles of ALD Al2O3 deposited directly on top of the CH3NH3PbI3- xCl x perovskite material, are effective in delivering a superior PSC performance with 18% efficiency (compared to 15% of the Al2O3-free cell) with a long-term humidity-stability of more than 60 days. Motivated by these results, the present contribution focuses on the chemical modification which the CH3NH3PbI3- xCl x perovskite undergoes upon growth of ALD Al2O3. Specifically, we combine in situ Infrared (IR) spectroscopy studies during film growth, together with X-ray photoelectron spectroscopy (XPS) analysis of the ALD Al2O3/perovskite interface. The IR-active signature of the NH3+ stretching mode of the perovskite undergoes minimal changes upon exposure to ALD cycles, suggesting no diffusion of ALD precursor and co-reactant (Al(CH3)3 and H2O) into the bulk of the perovskite. However, by analyzing the difference between the IR spectra associated with the Al2O3 coated perovskite and the pristine perovskite, respectively, changes occurring at the surface of perovskite are monitored. The abstraction of either NH3 or CH3NH2 from the perovskite surface is observed as deduced by the development of negative N-H bands associated with its stretching and bending modes. The IR investigations are corroborated by XPS study, confirming the abstraction of CH3NH2 from the perovskite surface, whereas no oxidation of its inorganic framework is observed within the ALD window process investigated in this work. In parallel, the growth of ALD Al2O3 on perovskite is witnessed by the appearance of characteristic IR-active Al-O-Al phonon and (OH)-Al═O stretching modes. Based on the IR and XPS investigations, a plausible growth mechanism of ALD Al2O3 on top of perovskite is presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI