材料科学
小丘
纳米光刻
单晶硅
制作
硅
纳米结构
纳米技术
纳米点
光电子学
复合材料
医学
替代医学
病理
作者
Bingjun Yu,Hanshan Dong,Linmao Qian,Yunfei Chen,Jiaxin Yu,Zhongrong Zhou
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2009-10-22
卷期号:20 (46): 465303-465303
被引量:68
标识
DOI:10.1088/0957-4484/20/46/465303
摘要
Fabrication of nanostructures has become a major concern as the scaling of device dimensions continues. In this paper, a friction-induced nanofabrication method is proposed to fabricate protrusive nanostructures on silicon. Without applying any voltage, the nanofabrication is completed by sliding an AFM diamond tip on a sample surface under a given normal load. Nanostructured patterns, such as linear nanostructures, nanodots or nanowords, can be fabricated on the target surface. The height of these nanostructures increases rapidly at first and then levels off with the increasing normal load or number of scratching cycles. TEM analyses suggest that the friction-induced hillock is composed of silicon oxide, amorphous silicon and deformed silicon structures. Compared to the tribochemical reaction, the amorphization and crystal defects induced by the mechanical interaction may have played a dominating role in the formation of the hillocks. Similar to other proximal probe methods, the proposed method enables fabrication at specified locations and facilitates measuring the dimensions of nanostructures with high precision. It is highlighted that the fabrication can also be realized on electrical insulators or oxide surfaces, such as quartz and glass. Therefore, the friction-induced method points out a new route in fabricating nanostructures on demand.
科研通智能强力驱动
Strongly Powered by AbleSci AI