Multitask Sparse Nonnegative Matrix Factorization for Joint Spectral–Spatial Hyperspectral Imagery Denoising

高光谱成像 计算机科学 人工智能 模式识别(心理学) 降噪 神经编码 非负矩阵分解 稀疏逼近 矩阵分解 稀疏矩阵 量子力学 物理 特征向量 高斯分布
作者
Minchao Ye,Yuntao Qian,Jun Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:53 (5): 2621-2639 被引量:143
标识
DOI:10.1109/tgrs.2014.2363101
摘要

Hyperspectral imagery (HSI) denoising is a challenging problem because of the difficulty in preserving both spectral and spatial structures simultaneously. In recent years, sparse coding, among many methods dedicated to the problem, has attracted much attention and showed state-of-the-art performance. Due to the low-rank property of natural images, an assumption can be made that the latent clean signal is a linear combination of a minority of basis atoms in a dictionary, while the noise component is not. Based on this assumption, denoising can be explored as a sparse signal recovery task with the support of a dictionary. In this paper, we propose to solve the HSI denoising problem by sparse nonnegative matrix factorization (SNMF), which is an integrated model that combines parts-based dictionary learning and sparse coding. The noisy image is used as the training data to learn a dictionary, and sparse coding is used to recover the image based on this dictionary. Unlike most HSI denoising approaches, which treat each band image separately, we take the joint spectral-spatial structure of HSI into account. Inspired by multitask learning, a multitask SNMF (MTSNMF) method is developed, in which bandwise denoising is linked across the spectral domain by sharing a common coefficient matrix. The intrinsic image structures are treated differently but interdependently within the spatial and spectral domains, which allows the physical properties of the image in both spatial and spectral domains to be reflected in the denoising model. The experimental results show that MTSNMF has superior performance on both synthetic and real-world data compared with several other denoising methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小事完成签到 ,获得积分10
3秒前
4秒前
gyh发布了新的文献求助10
8秒前
李爱国应助fanssw采纳,获得10
10秒前
杨枝云发布了新的文献求助10
12秒前
阿尼完成签到 ,获得积分10
14秒前
酒温书生完成签到,获得积分10
15秒前
先锋完成签到 ,获得积分10
17秒前
所所应助gyh采纳,获得10
19秒前
maxinyu完成签到 ,获得积分10
22秒前
Hello应助fanssw采纳,获得10
22秒前
科研狗的春天完成签到 ,获得积分10
25秒前
26秒前
摸鱼人完成签到,获得积分10
27秒前
华子的五A替身完成签到,获得积分10
30秒前
田様应助fanssw采纳,获得10
33秒前
33秒前
NexusExplorer应助风趣青槐采纳,获得10
34秒前
常常完成签到 ,获得积分10
35秒前
37秒前
41秒前
ywindm完成签到,获得积分10
42秒前
完美世界应助科研通管家采纳,获得10
44秒前
风趣青槐发布了新的文献求助10
44秒前
CipherSage应助fanssw采纳,获得10
45秒前
或无情完成签到 ,获得积分10
50秒前
八百标兵完成签到,获得积分10
50秒前
北国雪未消完成签到 ,获得积分10
51秒前
早日毕业完成签到 ,获得积分10
54秒前
Ava应助fanssw采纳,获得10
58秒前
徐新雨完成签到 ,获得积分10
1分钟前
顾矜应助杨枝云采纳,获得10
1分钟前
小小咸鱼完成签到 ,获得积分10
1分钟前
1分钟前
所所应助马季采纳,获得30
1分钟前
gyh发布了新的文献求助10
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
慕青应助fanssw采纳,获得10
1分钟前
碧蓝世界完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774490
求助须知:如何正确求助?哪些是违规求助? 4107380
关于积分的说明 12704969
捐赠科研通 3828308
什么是DOI,文献DOI怎么找? 2111991
邀请新用户注册赠送积分活动 1135950
关于科研通互助平台的介绍 1019463