克里金
替代模型
解算器
插值(计算机图形学)
采样(信号处理)
计算机科学
空气动力学
计算
航程(航空)
自适应采样
数学优化
集合(抽象数据类型)
算法
机器学习
数学
统计
人工智能
航空航天工程
工程类
蒙特卡罗方法
滤波器(信号处理)
运动(物理)
程序设计语言
计算机视觉
作者
Benjamin Rosenbaum,Volker Schulz
标识
DOI:10.1002/zamm.201100112
摘要
Abstract In aerodynamic applications often evaluations of an expensive computer simulation like a CFD solver are needed for a whole range of input parameters. Dense computations to describe the global behavior of an objective function are out of reach due to limited computational resources. Surrogate models like the Kriging method allow an interpolation of collected data and a global approximation. Adaptive sampling strategies can reduce the number of required samples for accurate and efficient surrogate models by automatically identifying critical or too coarse sampled regions of the input domain. We compare different existing sampling strategies as well as new theoretical methods using a dense set of validation data in order to gain a deeper understanding of optimal sample distributions and lower error boundaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI