材料科学
多孔性
化学工程
润湿
氢氧化物
表面粗糙度
静电纺丝
复合材料
纳米技术
聚合物
工程类
作者
Zahed Shami,S. Mojtaba Amininasab,Pegah Shakeri
标识
DOI:10.1021/acsami.6b07744
摘要
A straightforward approach was successfully developed to fabricate a well-designed three-dimensional rough sheetlike MgAl-layered double hydroxide (LDH) array to stand vertically on poly(acrylonitrile) porous nanofibrous membranes based on an electrospun-nanofiber-templated in situ hydrothermal strategy, and then the surface was modified with cyclohexanecarboxylic acid. The as-spun highly dense ordered sheetlike LDH porous nanofabric exhibited a superior durability in superhydrophobicity and superoleophilicity, which has achieved high oil-removing capability including both oil harvesting and oil separation to harvest/separate a wide range of organic solvents and oils from an oil-water mixture and, especially, exhibited a very good recycling and reusing performance. Interestingly, a steady water repellency was obtained against both drinkable hot (about 95 °C) and cool water. Outstanding oil harvesting, oil separation, and highly durable water repellant can be attributed to an effective synergistic effect between the high-density roughness of LDH nanosheets modified with acid and the very high porosity in the electrospun nanofibers, as well as the interspace between LDH nanosheets that acted as both a textile for selective oil separation and a container for penetrated oil storage, leading to special wettability, making the as-spun nanofabric a promising textile for large-scale removal and recollection of hydrophobic spillage on the water surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI