聚类分析
CURE数据聚类算法
计算机科学
树冠聚类算法
数据流聚类
数据挖掘
相关聚类
分拆(数论)
单连锁聚类
比例(比率)
模糊聚类
层次聚类
算法
人工智能
模式识别(心理学)
数学
组合数学
物理
量子力学
作者
Xiufeng Shao,Wei Cheng
标识
DOI:10.1109/itime.2011.6130839
摘要
Aiming at the classification problem of large-scale document information, a large-scale data clustering algorithm based on improved CURE algorithm is proposed. By clustering the data partition and the initial class of after partition, data tracking, the large-scale data hierarchical clustering and sample classification is achieved, that better solved the balance of clustering quality and clustering effectiveness. Taking the actual document processing of Large-scale network data, the experiment results show that the algorithm is efficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI