电解质
流动电池
氧化还原
电池(电)
水溶液
材料科学
化学工程
化学
无机化学
有机化学
电极
热力学
物理
工程类
物理化学
功率(物理)
作者
Kaixiang Lin,Rafael Gómez‐Bombarelli,Eugene S. Beh,Liuchuan Tong,Qing Chen,Alvaro W. Valle,Alán Aspuru‐Guzik,Michael J. Aziz,Roy G. Gordon
出处
期刊:Nature Energy
[Nature Portfolio]
日期:2016-07-18
卷期号:1 (9)
被引量:489
标识
DOI:10.1038/nenergy.2016.102
摘要
Redox-flow batteries (RFBs) can store large amounts of electrical energy from variable sources, such as solar and wind. Recently, redox-active organic molecules in aqueous RFBs have drawn substantial attention due to their rapid kinetics and low membrane crossover rates. Drawing inspiration from nature, here we report a high-performance aqueous RFB utilizing an organic redox compound, alloxazine, which is a tautomer of the isoalloxazine backbone of vitamin B2. It can be synthesized in high yield at room temperature by single-step coupling of inexpensive o-phenylenediamine derivatives and alloxan. The highly alkaline-soluble alloxazine 7/8-carboxylic acid produces a RFB exhibiting open-circuit voltage approaching 1.2 V and current efficiency and capacity retention exceeding 99.7% and 99.98% per cycle, respectively. Theoretical studies indicate that structural modification of alloxazine with electron-donating groups should allow further increases in battery voltage. As an aza-aromatic molecule that undergoes reversible redox cycling in aqueous electrolyte, alloxazine represents a class of radical-free redox-active organics for use in large-scale energy storage. Redox-flow batteries with organic-based electrolytes hold many advantages over conventional-flow batteries. Here the authors report a high-performance flow battery based on alloxazine, an aqueous-stable and soluble redox-active organic molecule resembling the backbone structure of vitamin B2.
科研通智能强力驱动
Strongly Powered by AbleSci AI