SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation

计算机科学 分割 背景(考古学) 人工智能 特征(语言学) 比例(比率) 模式识别(心理学) 任务(项目管理) 语义学(计算机科学) 计算机视觉 地图学 生物 哲学 古生物学 经济 管理 程序设计语言 地理 语言学
作者
Huisi Wu,Wei Wang,Jiafu Zhong,Baiying Lei,Zhenkun Wen,Jing Qin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:70: 102025-102025 被引量:187
标识
DOI:10.1016/j.media.2021.102025
摘要

Accurately segmenting retinal vessel from retinal images is essential for the detection and diagnosis of many eye diseases. However, it remains a challenging task due to (1) the large variations of scale in the retinal vessels and (2) the complicated anatomical context of retinal vessels, including complex vasculature and morphology, the low contrast between some vessels and the background, and the existence of exudates and hemorrhage. It is difficult for a model to capture representative and distinguishing features for retinal vessels under such large scale and semantics variations. Limited training data also make this task even harder. In order to comprehensively tackle these challenges, we propose a novel scale and context sensitive network (a.k.a., SCS−Net) for retinal vessel segmentation. We first propose a scale-aware feature aggregation (SFA) module, aiming at dynamically adjusting the receptive fields to effectively extract multi-scale features. Then, an adaptive feature fusion (AFF) module is designed to guide efficient fusion between adjacent hierarchical features to capture more semantic information. Finally, a multi-level semantic supervision (MSS) module is employed to learn more distinctive semantic representation for refining the vessel maps. We conduct extensive experiments on the six mainstream retinal image databases (DRIVE, CHASEDB1, STARE, IOSTAR, HRF, and LES-AV). The experimental results demonstrate the effectiveness of the proposed SCS-Net, which is capable of achieving better segmentation performance than other state-of-the-art approaches, especially for the challenging cases with large scale variations and complex context environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
什么也难不倒我完成签到 ,获得积分10
刚刚
阿艺完成签到,获得积分10
刚刚
西扬完成签到,获得积分10
刚刚
1秒前
3秒前
清脆的天思完成签到,获得积分10
4秒前
我是老大应助初心采纳,获得10
5秒前
胡大嘴先生完成签到,获得积分10
5秒前
5秒前
立食劳栖发布了新的文献求助10
5秒前
6秒前
3080完成签到 ,获得积分10
8秒前
yb发布了新的文献求助10
10秒前
英俊的铭应助昏睡的笑南采纳,获得10
10秒前
10秒前
阿苇发布了新的文献求助10
10秒前
Doctor.Xie完成签到,获得积分10
10秒前
wsw发布了新的文献求助50
10秒前
Lee完成签到,获得积分10
11秒前
11秒前
Jasper应助燕子采纳,获得30
12秒前
hexinyu发布了新的文献求助10
13秒前
14秒前
Rochester完成签到,获得积分10
15秒前
开心绿柳完成签到,获得积分10
15秒前
Wind发布了新的文献求助10
15秒前
16秒前
不安的晓灵完成签到 ,获得积分10
16秒前
Ferry完成签到 ,获得积分10
17秒前
立食劳栖完成签到,获得积分10
17秒前
ATTENTION完成签到,获得积分10
17秒前
neiz完成签到,获得积分10
19秒前
wjw发布了新的文献求助10
19秒前
20秒前
21秒前
只爱科研狗完成签到,获得积分10
22秒前
害羞的凝竹完成签到 ,获得积分10
22秒前
赵晶晶完成签到,获得积分10
22秒前
YXG发布了新的文献求助10
23秒前
科研通AI5应助zhanglin采纳,获得10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785