Research on the Training Model of Broadcasting and Hosting Talents under the Background of AI Anchors

广播(网络) 背景(考古学) 计算机科学 动作(物理) 培训(气象学) 竞赛(生物学) 多媒体 工作(物理) 艺术 面子(社会学概念) 工程类 社会学 政治学 计算机安全 法学 历史 机械工程 生物 量子力学 物理 气象学 考古 社会科学 生态学
作者
Xuya Wang
出处
期刊:Academic journal of humanities & social sciences [Francis Academic Press Ltd.]
卷期号:4 (5) 被引量:8
标识
DOI:10.25236/ajhss.2021.040513
摘要

With the development of artificial intelligence in the media field, the traditional art of broadcasting and hosting is facing huge challenges in teaching and practice. In particular, the advent of artificial intelligence synthetic anchors has caused a huge impact on the host and announcer industry. Many practitioners are full of doubts about whether they will be replaced by artificial intelligence anchors. AI anchors can not only broadcast news without error, spread information across languages but also work uninterrupted 24 hours a day, 365 days a day, which greatly improves work efficiency. In 2019, foreign media such as The Times, Newsweek, and Los Angeles Times reported that news anchors in China may face some new competition because AI anchors can imitate human facial expressions and behaviors when broadcasting news. This means that from the screen, the simulation level of the artificial intelligence anchor is almost the same as that of a real person. This undoubtedly puts those live-action anchors facing the risk of being eliminated, and it puts forward new requirements for the teaching and training of the art of broadcasting and hosting. Therefore, in the context of AI anchors, it is urgent to explore how to train competitive announcers and hosts. This paper studies the development of the talent training model for broadcasting and hosting under the background of artificial intelligence. The results will help to cultivate industry-competitive broadcasting and hosting talents and greatly improve the professional ability of students majoring in broadcasting and hosting arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尕辉完成签到,获得积分20
刚刚
落后千雁完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
su发布了新的文献求助10
1秒前
我是老大应助伶俐的化蛹采纳,获得30
2秒前
完美太清完成签到,获得积分10
2秒前
HAHAHA发布了新的文献求助20
2秒前
科研通AI5应助lily采纳,获得10
3秒前
曹志毅完成签到 ,获得积分10
3秒前
4秒前
zhao完成签到,获得积分10
5秒前
sff发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
冷语发布了新的文献求助10
7秒前
共享精神应助单手开坦克采纳,获得10
8秒前
Konien完成签到 ,获得积分10
8秒前
9秒前
懵懂的采梦应助科研小虫采纳,获得10
9秒前
风汐5423完成签到 ,获得积分10
9秒前
付理想发布了新的文献求助10
9秒前
10秒前
深情安青应助畅快的刚采纳,获得10
10秒前
程瀚砚完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
YiZhuo发布了新的文献求助10
13秒前
14秒前
无花果应助我世界第一快采纳,获得10
14秒前
Ava应助付理想采纳,获得10
14秒前
南风完成签到 ,获得积分10
15秒前
英姑应助曾珍采纳,获得10
15秒前
16秒前
大模型应助su采纳,获得10
16秒前
科研通AI5应助柔弱的盼柳采纳,获得10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828014
求助须知:如何正确求助?哪些是违规求助? 3370280
关于积分的说明 10462497
捐赠科研通 3090257
什么是DOI,文献DOI怎么找? 1700281
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442