PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture

判别式 计算机科学 人工智能 卷积神经网络 深度学习 蛋白质二级结构 特征(语言学) 构造(python库) 学习迁移 机器学习 模式识别(心理学) 生物 语言学 生物化学 哲学 程序设计语言
作者
Cao Xiao,Wenjia He,Zitan Chen,Yifan Li,Kexin Wang,Hongbo Zhang,Lesong Wei,Lizhen Cui,Ran Su,Leyi Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:4
标识
DOI:10.1093/bib/bbab203
摘要

The prediction of peptide secondary structures is fundamentally important to reveal the functional mechanisms of peptides with potential applications as therapeutic molecules. In this study, we propose a multi-view deep learning method named Peptide Secondary Structure Prediction based on Multi-View Information, Restriction and Transfer learning (PSSP-MVIRT) for peptide secondary structure prediction. To sufficiently exploit discriminative information, we introduce a multi-view fusion strategy to integrate different information from multiple perspectives, including sequential information, evolutionary information and hidden state information, respectively, and generate a unified feature space. Moreover, we construct a hybrid network architecture of Convolutional Neural Network and Bi-directional Gated Recurrent Unit to extract global and local features of peptides. Furthermore, we utilize transfer learning to effectively alleviate the lack of training samples (peptides with experimentally validated structures). Comparative results on independent tests demonstrate that our proposed method significantly outperforms state-of-the-art methods. In particular, our method exhibits better performance at the segment level, suggesting the strong ability of our model in capturing local discriminative information. The case study also shows that our PSSP-MVIRT achieves promising and robust performance in the prediction of new peptide secondary structures. Importantly, we establish a webserver to implement the proposed method, which is currently accessible via http://server.malab.cn/PSSP-MVIRT. We expect it can be a useful tool for the researchers of interest, facilitating the wide use of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming应助polarisblue采纳,获得10
1秒前
风中的逊完成签到,获得积分10
1秒前
lala发布了新的文献求助10
1秒前
2秒前
2秒前
嘻嘻嘻完成签到,获得积分10
2秒前
ibigbird完成签到,获得积分10
3秒前
3秒前
派大星发布了新的文献求助10
4秒前
4秒前
5秒前
iNk应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
细腻慕儿完成签到 ,获得积分10
7秒前
ibigbird发布了新的文献求助10
7秒前
7秒前
方的圆发布了新的文献求助30
8秒前
8秒前
9秒前
张琦发布了新的文献求助10
9秒前
满意的天完成签到 ,获得积分10
10秒前
科研完成签到,获得积分10
11秒前
12秒前
冷傲语风完成签到,获得积分20
13秒前
nihil发布了新的文献求助10
13秒前
13秒前
平常亦凝发布了新的文献求助10
14秒前
呵呵呵完成签到,获得积分10
14秒前
1157588380完成签到,获得积分10
14秒前
方的圆完成签到,获得积分20
15秒前
正在发布了新的文献求助20
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333