Low-dose CT denoising via convolutional neural network with an observer loss function.

计算机科学 人工智能 降噪 噪音(视频) 卷积神经网络 图像质量 模式识别(心理学) 图像噪声 算法 迭代重建 医学影像学 深度学习
作者
Minah Han,Hyunjung Shim,Jongduk Baek
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 5727-5742
标识
DOI:10.1002/mp.15161
摘要

Purpose Convolutional neural network (CNN)-based denoising is an effective method for reducing complex computed tomography (CT) noise. However, the image blur induced by denoising processes is a major concern. The main source of image blur is the pixel-level loss (e.g., mean squared error [MSE] and mean absolute error [MAE]) used to train a CNN denoiser. To reduce the image blur, feature-level loss is utilized to train a CNN denoiser. A CNN denoiser trained using visual geometry group (VGG) loss can preserve the small structures, edges, and texture of the image.However, VGG loss, derived from an ImageNet-pretrained image classifier, is not optimal for training a CNN denoiser for CT images. ImageNet contains natural RGB images, so the features extracted by the ImageNet-pretrained model cannot represent the characteristics of CT images that are highly correlated with diagnosis. Furthermore, a CNN denoiser trained with VGG loss causes bias in CT number. Therefore, we propose to use a binary classification network trained using CT images as a feature extractor and newly define the feature-level loss as observer loss. Methods As obtaining labeled CT images for training classification network is difficult, we create labels by inserting simulated lesions. We conduct two separate classification tasks, signal-known-exactly (SKE) and signal-known-statistically (SKS), and define the corresponding feature-level losses as SKE loss and SKS loss, respectively. We use SKE loss and SKS loss to train CNN denoiser. Results Compared to pixel-level losses, a CNN denoiser trained using observer loss (i.e., SKE loss and SKS loss) is effective in preserving structure, edge, and texture. Observer loss also resolves the bias in CT number, which is a problem of VGG loss. Comparing observer losses using SKE and SKS tasks, SKS yields images having a more similar noise structure to reference images. Conclusions Using observer loss for training CNN denoiser is effective to preserve structure, edge, and texture in denoised images and prevent the CT number bias. In particular, when using SKS loss, denoised images having a similar noise structure to reference images are generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳阳霜霜完成签到,获得积分10
2秒前
洁净的静芙完成签到 ,获得积分10
8秒前
pangkuan完成签到,获得积分10
8秒前
我说苏卡你说不列完成签到,获得积分10
10秒前
Cici完成签到 ,获得积分10
19秒前
在水一方应助雪山飞龙采纳,获得10
31秒前
欣欣完成签到 ,获得积分10
35秒前
HEIKU应助卢敏明采纳,获得10
40秒前
大气夜山完成签到 ,获得积分10
43秒前
John完成签到 ,获得积分10
43秒前
tianliyan完成签到 ,获得积分10
47秒前
48秒前
雪山飞龙发布了新的文献求助10
52秒前
甜蜜的白桃完成签到 ,获得积分10
53秒前
HEIKU应助卢敏明采纳,获得10
54秒前
aiyawy完成签到 ,获得积分10
1分钟前
hsrlbc完成签到,获得积分10
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
obaica完成签到,获得积分10
1分钟前
细胞呵呵完成签到 ,获得积分10
1分钟前
张若旸完成签到 ,获得积分10
1分钟前
1分钟前
ng完成签到 ,获得积分10
1分钟前
小李子完成签到,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
任性的思远完成签到 ,获得积分10
1分钟前
科研通AI5应助研友_ZlvpxL采纳,获得10
1分钟前
zz完成签到 ,获得积分10
1分钟前
沉静皮带完成签到 ,获得积分10
1分钟前
1分钟前
jfc完成签到,获得积分10
1分钟前
xioabu完成签到,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
xioabu发布了新的文献求助10
1分钟前
pangkuan发布了新的文献求助10
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
2分钟前
忧虑的静柏完成签到 ,获得积分10
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418933
捐赠科研通 3081206
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539