Exploiting Cross-session Information for Session-based Recommendation with Graph Neural Networks

会话(web分析) 计算机科学 图形 人工智能 情报检索 万维网 理论计算机科学
作者
Ruihong Qiu,Zi Huang,Jingjing Li,Hongzhi Yin
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:38 (3): 1-23 被引量:46
标识
DOI:10.1145/3382764
摘要

Different from the traditional recommender system, the session-based recommender system introduces the concept of the session , i.e., a sequence of interactions between a user and multiple items within a period, to preserve the user’s recent interest. The existing work on the session-based recommender system mainly relies on mining sequential patterns within individual sessions, which are not expressive enough to capture more complicated dependency relationships among items. In addition, it does not consider the cross-session information due to the anonymity of the session data, where the linkage between different sessions is prevented. In this article, we solve these problems with the graph neural networks technique. First, each session is represented as a graph rather than a linear sequence structure, based on which a novel F ull G raph N eural N etwork (FGNN) is proposed to learn complicated item dependency. To exploit and incorporate cross-session information in the individual session’s representation learning, we further construct a B roadly C onnected S ession (BCS) graph to link different sessions and a novel Mask-Readout function to improve session embedding based on the BCS graph. Extensive experiments have been conducted on two e-commerce benchmark datasets, i.e., Yoochoose and Diginetica , and the experimental results demonstrate the superiority of our proposal through comparisons with state-of-the-art session-based recommender models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助南怀采纳,获得10
1秒前
科研通AI6应助南怀采纳,获得10
1秒前
冷傲雨寒完成签到,获得积分10
3秒前
小白兔完成签到 ,获得积分10
3秒前
chrysophoron发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
5秒前
传奇3应助愉快幻悲采纳,获得10
7秒前
CCC发布了新的文献求助10
9秒前
内向的小凡完成签到,获得积分0
9秒前
_Mr_K_完成签到 ,获得积分10
12秒前
厚厚完成签到,获得积分10
12秒前
stark完成签到,获得积分10
13秒前
14秒前
15秒前
lv完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助150
17秒前
xjc完成签到 ,获得积分10
17秒前
冷酷的芷容完成签到 ,获得积分10
18秒前
希音发布了新的文献求助10
19秒前
Thanks完成签到 ,获得积分10
21秒前
陆oi发布了新的文献求助10
22秒前
余浩宇发布了新的文献求助10
24秒前
Zz完成签到,获得积分10
25秒前
25秒前
深情安青应助花卷儿采纳,获得10
25秒前
小章鱼哇哈哈哈哈哈哈哈完成签到 ,获得积分10
29秒前
罗逸完成签到 ,获得积分20
29秒前
Lsx发布了新的文献求助10
30秒前
kingmp2完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助150
32秒前
巴旦木完成签到 ,获得积分10
36秒前
38秒前
上官若男应助糖卜里卜采纳,获得10
38秒前
愉快的乐双完成签到 ,获得积分10
38秒前
桐桐应助学术laji采纳,获得10
39秒前
小新淘金关注了科研通微信公众号
39秒前
40秒前
明天见完成签到,获得积分10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057136
求助须知:如何正确求助?哪些是违规求助? 4282531
关于积分的说明 13345908
捐赠科研通 4099525
什么是DOI,文献DOI怎么找? 2244328
邀请新用户注册赠送积分活动 1250382
关于科研通互助平台的介绍 1180864