已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Query Pixel Guided Stroke Extraction with Model-Based Matching for Offline Handwritten Chinese Characters

计算机科学 汉字 人工智能 冲程(发动机) 骨骼化 模式识别(心理学) 性格(数学) 匹配(统计) 像素 分割 失真(音乐) 手写体识别 卷积神经网络 笔迹 特征提取 数学 机械工程 放大器 计算机网络 统计 几何学 带宽(计算) 工程类
作者
Tie-Qiang Wang,Xiaoyi Jiang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:123: 108416-108416 被引量:13
标识
DOI:10.1016/j.patcog.2021.108416
摘要

Stroke extraction and matching are critical for structural interpretation based applications of handwritten Chinese characters, such as Chinese character education and calligraphy analysis. Stroke extraction from offline handwritten Chinese characters is difficult because of the missing of temporal information, the multi-stroke structures and the distortion of handwritten shapes. In this paper, we propose a comprehensive scheme for solving the stroke extraction problem for handwritten Chinese characters. The method consists of three main steps: (1) fully convolutional network (FCN) based skeletonization; (2) query pixel guided stroke extraction; (3) model-based stroke matching. Specifically, based on a recently proposed architecture of FCN, both the stroke skeletons and cross regions are firstly extracted from the character image by the proposed SkeNet and CrossNet, respectively. Stroke extraction is solved by simulating the human perception that once given a certain pixel from non-cross region of a stroke, the whole stroke containing the pixel can be traced. To realize this idea, we formulate stroke extraction as a problem of pairing and connecting skeleton-wise stroke segments which are adjacent to the same cross region, where the pairing consistency between stroke segments is measured using a PathNet [1]. To reduce the ambiguity of stroke extraction, the extracted candidate strokes are matched with a character model consisting of standard strokes by tree search to identify the correct strokes. For verifying the effectiveness of the proposed method, we train and test our models on character images with stroke segmentation annotations generated from the online handwriting datasets CASIA-OLHWDB and ICDAR13-Online, as well as a dataset of Regularly-Written online handwritten characters (RW-OLHWDB). The experimental results demonstrate the effectiveness of the proposed method and provide several benchmarks. Particularly, the precisions of stroke extraction for ICDAR13-Online and RW-OLHWDB are 89.0% and 94.9%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC完成签到 ,获得积分10
1秒前
sep发布了新的文献求助10
2秒前
共享精神应助sep采纳,获得10
6秒前
GingerF应助潇洒小松鼠采纳,获得200
6秒前
老实的友蕊完成签到 ,获得积分10
8秒前
垫垫完成签到 ,获得积分10
9秒前
华仔应助yan采纳,获得10
11秒前
三鲜汤完成签到,获得积分20
13秒前
15秒前
星空完成签到 ,获得积分10
18秒前
星空完成签到 ,获得积分10
18秒前
BENRONG发布了新的文献求助10
20秒前
爱听歌的悒完成签到 ,获得积分10
21秒前
六尺巷完成签到,获得积分10
24秒前
蒋中豪完成签到 ,获得积分10
26秒前
30秒前
耶啵完成签到 ,获得积分10
30秒前
社会主义接班人完成签到,获得积分10
34秒前
QingGuo完成签到,获得积分10
36秒前
狂野的研究僧完成签到,获得积分10
36秒前
36秒前
灵巧的嚣完成签到,获得积分10
37秒前
小二郎应助辛勤的青易采纳,获得10
37秒前
yan发布了新的文献求助10
39秒前
44秒前
47秒前
L晨晨完成签到 ,获得积分10
49秒前
judy891zhu发布了新的文献求助10
50秒前
aldehyde应助科研通管家采纳,获得10
51秒前
研友_VZG7GZ应助科研通管家采纳,获得10
51秒前
斯文败类应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
CAOHOU应助科研通管家采纳,获得10
51秒前
搜集达人应助科研通管家采纳,获得10
51秒前
李键刚完成签到 ,获得积分10
53秒前
54秒前
55秒前
hujin发布了新的文献求助20
56秒前
共享精神应助duoduo采纳,获得10
57秒前
orixero应助卡酷采纳,获得10
57秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4080012
求助须知:如何正确求助?哪些是违规求助? 3619423
关于积分的说明 11485758
捐赠科研通 3335444
什么是DOI,文献DOI怎么找? 1833687
邀请新用户注册赠送积分活动 902688
科研通“疑难数据库(出版商)”最低求助积分说明 821214