Quenching as a Route to Defect‐Rich Ru‐Pyrochlore Electrocatalysts toward the Oxygen Evolution Reaction

焦绿石 材料科学 析氧 猝灭(荧光) 氧化物 氧气 催化作用 电化学 金属 化学工程 电解 电催化剂 无机化学 纳米技术 冶金 化学 电极 物理化学 工程类 物理 有机化学 荧光 电解质 量子力学 生物化学 相(物质)
作者
Tongtong Liu,Shaoxuan Yang,Jingyu Guan,Jin Niu,Zhengping Zhang,Feng Wang
出处
期刊:Small methods [Wiley]
卷期号:6 (1) 被引量:25
标识
DOI:10.1002/smtd.202101156
摘要

Defects have a significant impact on the electrocatalysts performance. Introducing defect structures in metal oxides such as pyrochlores and perovskites has proved to be an effective strategy to enhance electrocatalytic activity. However, it is hard to build numerous defect sites in such high-temperature oxides due to the strong metal-oxygen bonds and the so-called self-purification effect, which becomes increasingly important as the particle size reduced to the nanoscale. Here, a facile strategy is demonstrated to fabricate defect-rich yttrium ruthenate oxides Y2 Ru2 O7-δ with the pyrochlore structure (denoted Drich -YRO) by the liquid nitrogen (<-196 °C) quenching. Owing to the almost instantaneous cooling in oxygen-deficient condition, a large number of defects-including oxygen vacancies, grain boundaries, pores and surficial disorder-are preserved in the room temperature material and act as electrocatalytic active sites for oxygen evolution. As a result, Drich -YRO shows excellent catalytic activity and high electrochemical stability, along with a high performance in the operation of proton exchange membrane electrolyzer. The quenching strategy employed in this work provides a facile approach for constructing defect-rich structures in high-temperature oxides and should lead to new applications in energy conversion and storage devices for such materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助150
1秒前
1秒前
往复完成签到,获得积分20
2秒前
2秒前
2秒前
上官若男应助等乙天采纳,获得10
3秒前
丘比特应助希音采纳,获得10
3秒前
4秒前
标致爆米花完成签到,获得积分20
4秒前
VV完成签到,获得积分10
5秒前
蓉儿发布了新的文献求助10
5秒前
CoCo完成签到 ,获得积分10
5秒前
生动映波发布了新的文献求助10
5秒前
小泥熊关注了科研通微信公众号
5秒前
6秒前
浮游呦呦完成签到,获得积分10
6秒前
linkman发布了新的文献求助10
7秒前
wxj发布了新的文献求助10
7秒前
8秒前
平常的青荷完成签到,获得积分10
10秒前
Hilda007发布了新的文献求助10
11秒前
11秒前
乐乐应助刘凯采纳,获得10
12秒前
JamesPei应助希音采纳,获得10
12秒前
12秒前
蓝桉发布了新的文献求助10
13秒前
Orange应助duzhi采纳,获得10
13秒前
14秒前
15秒前
16秒前
16秒前
领衔发布了新的文献求助10
16秒前
ZSS完成签到,获得积分10
17秒前
17秒前
曦忘完成签到,获得积分10
17秒前
慕青应助滴滴滴采纳,获得10
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982