An intelligent and automated 3D surface defect detection system for quantitative 3D estimation and feature classification of material surface defects

人工智能 计算机视觉 计算机科学 点云 特征(语言学) 分割 三维重建 立体摄像机 摄影测量学 由运动产生的结构 卷积神经网络 运动估计 哲学 语言学
作者
Yulong Zong,Jin Liang,Huan Wang,Maodong Ren,Mingkai Zhang,Wenpan Li,Lu Wang,Meitu Ye
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:144: 106633-106633 被引量:35
标识
DOI:10.1016/j.optlaseng.2021.106633
摘要

To evaluate defects on the surface of the materials at the 3D level accurately and quantitatively, a 3D surface defect detection system based on stereo vision is presented, which can extract the precise 3D defect features of the detected object. The proposed detection system consists of two image capture modules and a turntable to capture the complete 3D information and color texture information from the object surface. More precisely, each image capture module is a binocular stereo vision system containing two monochrome cameras, a color camera, and a speckle projector which is used to reconstruct the 3D point clouds of the object surface based on stereo digital image correlation (stereo-DIC). Furthermore, a point-image mapping relationship between the reconstructed 3D object points and the color images is established. Eventually, the 3D characteristic parameters of defects are calculated by the corresponding 3D point cloud of the defect area obtained by segmenting the defect area using the image segmentation and point cloud segmentation algorithms according to this point-image mapping relationship. A convolutional neural network named DenseNets is employed to identify defect types intelligently. A high-precision multi-camera calibration method based on close-range photogrammetry is applied to ensure system detection accuracy in the proposed system. The experimental results demonstrate that the system has higher accuracy and better performance in system calibration, 3D reconstruction, and defect feature calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maxine完成签到 ,获得积分10
1秒前
Akim应助金桔儿采纳,获得10
1秒前
2秒前
3秒前
阿梅梅梅发布了新的文献求助10
3秒前
Vi完成签到,获得积分10
4秒前
123123发布了新的文献求助10
4秒前
5秒前
Asteria完成签到,获得积分10
5秒前
共行发布了新的文献求助10
6秒前
6秒前
研友_LpQGjn完成签到 ,获得积分10
8秒前
8秒前
西西2完成签到 ,获得积分10
9秒前
小菜鸡完成签到 ,获得积分10
9秒前
Ava应助清新的音响采纳,获得10
10秒前
柔之发布了新的文献求助10
10秒前
TIGun发布了新的文献求助10
13秒前
14秒前
14秒前
领导范儿应助123123采纳,获得10
15秒前
16秒前
16秒前
17秒前
BOB发布了新的文献求助10
21秒前
豌豆发布了新的文献求助10
22秒前
sunshine发布了新的文献求助10
22秒前
22秒前
23秒前
大个应助豌豆采纳,获得10
26秒前
yanna发布了新的文献求助10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得50
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366