Efficient and Model-Based Infrared and Visible Image Fusion via Algorithm Unrolling

图像融合 计算机科学 循环展开 卷积神经网络 算法 图像(数学) 人工智能 人工神经网络 特征(语言学) 融合规则 模式识别(心理学) 语言学 哲学 编译程序 程序设计语言
作者
Zixiang Zhao,Shuang Xu,Jiangshe Zhang,Chengyang Liang,Chunxia Zhang,Junmin Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 1186-1196 被引量:123
标识
DOI:10.1109/tcsvt.2021.3075745
摘要

Infrared and visible image fusion (IVIF) expects to obtain images that retain thermal radiation information from infrared images and texture details from visible images. In this paper, a model-based convolutional neural network (CNN) model, referred to as Algorithm Unrolling Image Fusion (AUIF), is proposed to overcome the shortcomings of traditional CNN-based IVIF models. The proposed AUIF model starts with the iterative formulas of two traditional optimization models, which are established to accomplish two-scale decomposition, i.e., separating low-frequency base information and high-frequency detail information from source images. Then the algorithm unrolling is implemented where each iteration is mapped to a CNN layer and each optimization model is transformed into a trainable neural network. Compared with the general network architectures, the proposed framework combines the model-based prior information and is designed more reasonably. After the unrolling operation, our model contains two decomposers (encoders) and an additional reconstructor (decoder). In the training phase, this network is trained to reconstruct the input image. While in the test phase, the base (or detail) decomposed feature maps of infrared/visible images are merged respectively by an extra fusion layer, and then the decoder outputs the fusion image. Qualitative and quantitative comparisons demonstrate the superiority of our model, which can robustly generate fusion images containing highlight targets and legible details, exceeding the state-of-the-art methods. Furthermore, our network has fewer weights and faster speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
八嘎完成签到,获得积分10
1秒前
我是老大应助ExtroGod采纳,获得10
1秒前
NexusExplorer应助无糖零脂采纳,获得10
1秒前
chiweiyoung完成签到,获得积分10
1秒前
1秒前
过期牛奶坏肚子完成签到,获得积分10
2秒前
3秒前
frulee给frulee的求助进行了留言
3秒前
DDE发布了新的文献求助10
3秒前
jiaqitang完成签到,获得积分10
3秒前
大气代灵完成签到,获得积分10
4秒前
丘比特应助虚幻的映采纳,获得10
4秒前
dw发布了新的文献求助30
4秒前
LLL完成签到,获得积分10
4秒前
xingxing发布了新的文献求助10
4秒前
4秒前
畅快忆安发布了新的文献求助10
5秒前
小饼干完成签到,获得积分10
5秒前
爱笑孤容完成签到,获得积分10
5秒前
悦耳破茧完成签到 ,获得积分10
5秒前
如人饮水君完成签到,获得积分10
6秒前
6秒前
7秒前
希望天下0贩的0应助贤君采纳,获得10
7秒前
7秒前
你是我的唯一完成签到,获得积分10
8秒前
jinhui完成签到,获得积分10
8秒前
sakura完成签到,获得积分10
8秒前
Tethys完成签到 ,获得积分10
8秒前
9秒前
悦耳小懒猪完成签到,获得积分10
9秒前
9秒前
三毛变相完成签到,获得积分10
9秒前
10秒前
义气高丽完成签到 ,获得积分10
10秒前
沙里飞完成签到 ,获得积分10
10秒前
大气代灵发布了新的文献求助10
10秒前
海盗船长完成签到,获得积分10
10秒前
李健应助王博雅采纳,获得10
10秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820413
求助须知:如何正确求助?哪些是违规求助? 3363363
关于积分的说明 10422332
捐赠科研通 3081743
什么是DOI,文献DOI怎么找? 1695230
邀请新用户注册赠送积分活动 814963
科研通“疑难数据库(出版商)”最低求助积分说明 768748