Least-Square Approximation for a Distributed System

估计员 计算机科学 数学优化 均方误差 数学 算法 二次方程 统计 几何学
作者
Xuening Zhu,Feng Li,Hansheng Wang
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:30 (4): 1004-1018 被引量:21
标识
DOI:10.1080/10618600.2021.1923517
摘要

In this work, we develop a distributed least-square approximation (DLSA) method that is able to solve a large family of regression problems (e.g., linear regression, logistic regression, and Cox’s model) on a distributed system. By approximating the local objective function using a local quadratic form, we are able to obtain a combined estimator by taking a weighted average of local estimators. The resulting estimator is proved to be statistically as efficient as the global estimator. Moreover, it requires only one round of communication. We further conduct a shrinkage estimation based on the DLSA estimation using an adaptive Lasso approach. The solution can be easily obtained by using the LARS algorithm on the master node. It is theoretically shown that the resulting estimator possesses the oracle property and is selection consistent by using a newly designed distributed Bayesian information criterion. The finite sample performance and computational efficiency are further illustrated by an extensive numerical study and an airline dataset. The airline dataset is 52 GB in size. The entire methodology has been implemented in Python for a de-facto standard Spark system. The proposed DLSA algorithm on the Spark system takes 26 min to obtain a logistic regression estimator, which is more efficient and memory friendly than conventional methods. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
风趣的水云完成签到 ,获得积分10
1秒前
川奈天吾完成签到,获得积分10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Grazia应助科研通管家采纳,获得10
3秒前
3秒前
zimo应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Thien应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
pcr163应助科研通管家采纳,获得50
4秒前
Orange应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
科研通AI5应助从容以山采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
鱼鱼发布了新的文献求助10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
PPP关闭了PPP文献求助
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Grazia应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821362
求助须知:如何正确求助?哪些是违规求助? 3364017
关于积分的说明 10427134
捐赠科研通 3082551
什么是DOI,文献DOI怎么找? 1695723
邀请新用户注册赠送积分活动 815232
科研通“疑难数据库(出版商)”最低求助积分说明 769050