二十烷酸
前列腺素H2
前列腺素
前列腺素E
环氧合酶
谷胱甘肽
酶
促炎细胞因子
化学
前列腺素E2
生物化学
ATP合酶
花生四烯酸
生物
炎症
内分泌学
免疫学
作者
Bengt Samuelsson,Ralf Morgenstern,Per‐Johan Jakobsson
出处
期刊:Pharmacological Reviews
[American Society for Pharmacology and Experimental Therapeutics]
日期:2007-09-01
卷期号:59 (3): 207-224
被引量:521
摘要
Prostaglandin E2 (PGE2) is the most abundant prostaglandin in the human body. It has a large number of biological actions that it exerts via four types of receptors, EP1–4. PGE2 is formed from arachidonic acid by cyclooxygenase (COX-1 and COX-2)-catalyzed formation of prostaglandin H2 (PGH2) and further transformation by PGE synthases. The isomerization of the endoperoxide PGH2 to PGE2 is catalyzed by three different PGE synthases, viz. cytosolic PGE synthase (cPGES) and two membrane-bound PGE synthases, mPGES-1 and mPGES-2. Of these isomerases, cPGES and mPGES-2 are constitutive enzymes, whereas mPGES-1 is mainly an induced isomerase. cPGES uses PGH2 produced by COX-1 whereas mPGES-1 uses COX-2-derived endoperoxide. mPGES-2 can use both sources of PGH2. mPGES-1 is a member of the membrane associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily. It requires glutathione as an essential cofactor for its activity. mPGES-1 is up-regulated in response to various proinflammatory stimuli with a concomitant increased expression of COX-2. The coordinate increased expression of COX-2 and mPGES-1 is reversed by glucocorticoids. Differences in the kinetics of the expression of the two enzymes suggest distinct regulatory mechanisms for their expression. Studies, mainly from disruption of the mPGES-1 gene in mice, indicate key roles of mPGES-1-generated PGE2 in female reproduction and in pathological conditions such as inflammation, pain, fever, anorexia, atherosclerosis, stroke, and tumorigenesis. These findings indicate that mPGES-1 is a potential target for the development of therapeutic agents for treatment of several diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI