Automatic uncoupling of massive dynamic strains induced by vehicle- and temperature-loads for monitoring of operating bridges

希尔伯特-黄变换 结构健康监测 稳健性(进化) 计算机科学 模式(计算机接口) 结构工程 拉伤 汽车工程 工程类 控制理论(社会学) 人工智能 白噪声 生物 控制(管理) 电信 基因 解剖 操作系统 生物化学
作者
Shuai Li,Hao Xu,Xin Zhang,Maosen Cao,Dragoslav Šumarac,Drahomír Novák
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:166: 108332-108332 被引量:24
标识
DOI:10.1016/j.ymssp.2021.108332
摘要

The massive dynamic strain of operating bridges, measured by a structural health monitoring (SHM) system, is naturally the coupling of different strain components associated with various sources, among which vehicle- and temperature-loads are the major contributors to strain components. Real-time uncoupling of vehicle- and temperature-induced strains is considerably needed when processing massy dynamic strain data acquired by SHM systems for monitoring of bridges relying on specific strain components. Currently, the empirical mode decomposition (EMD) is a typical method to uncouple the vehicle- and temperature-induced strains. Nevertheless, this method is capable of uncoupling these strains in a non-real-time manner due to involvement of manual intervention for setting certain parameter values in implementing the method. The key to real-time monitoring is to achieve uncoupling in an automatic way. This study proposes an enhanced EMD method, termed Auto-EMD method, based on a progressive utilization of EMD, Hilbert marginal spectrum, and Gaussian mixture model clustering. The Auto-EMD method embodies the predominant feature of automatically uncoupling of vehicle- and temperature-induced strains of operating bridges. The effectiveness of the proposed method is verified by numerical models of bridges subject to both vehicle- and temperature-loads, and the robustness to measurement noise is also demonstrated. Furthermore, the applicability of the proposed method in engineering practice is validated using dynamic strain data captured from the Sutong Yangtze River Highway Bridge. The results show that the proposed method can uncouple in real time the temperature- and vehicle-induced strains in a superior intelligent mode compared to that of the existing EMD. The Auto-EMD method provides a viable paradigm of uncoupling massive dynamic strain data for SHM applications of operating bridges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HGQ发布了新的文献求助10
2秒前
2秒前
纪亦瑶发布了新的文献求助10
3秒前
爆米花应助听粥采纳,获得10
5秒前
刘启娅发布了新的文献求助10
7秒前
爆米花应助与光采纳,获得10
12秒前
尊敬怀薇完成签到,获得积分10
12秒前
一久便惯完成签到,获得积分10
13秒前
haiwei完成签到 ,获得积分10
17秒前
情怀应助木光采纳,获得10
18秒前
聆琳完成签到 ,获得积分10
18秒前
pw完成签到,获得积分10
18秒前
19秒前
fiona完成签到,获得积分0
20秒前
淳于安筠发布了新的文献求助30
23秒前
Wangyingjie5完成签到,获得积分10
23秒前
23秒前
Hello应助lxrong采纳,获得10
27秒前
28秒前
NexusExplorer应助canoe采纳,获得10
30秒前
Zox完成签到,获得积分10
31秒前
小雨发布了新的文献求助30
32秒前
Vino发布了新的文献求助10
33秒前
35秒前
36秒前
夕诙完成签到,获得积分0
38秒前
黑摄会阿Fay完成签到,获得积分10
38秒前
科研狂人发布了新的文献求助10
39秒前
39秒前
Helfen发布了新的文献求助20
40秒前
闫123完成签到,获得积分10
43秒前
44秒前
lxrong发布了新的文献求助10
45秒前
传奇3应助Ginny采纳,获得10
46秒前
科研狂人完成签到,获得积分10
47秒前
48秒前
孙哈哈发布了新的文献求助30
48秒前
50秒前
小闵完成签到,获得积分10
51秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169200
求助须知:如何正确求助?哪些是违规求助? 3704460
关于积分的说明 11691166
捐赠科研通 3391329
什么是DOI,文献DOI怎么找? 1859943
邀请新用户注册赠送积分活动 920135
科研通“疑难数据库(出版商)”最低求助积分说明 832602