Multimodal Fusion Approach Based on EEG and EMG Signals for Lower Limb Movement Recognition

模式识别(心理学) 人工智能 脑电图 计算机科学 线性判别分析 肌电图 语音识别 特征提取 鉴别器 物理医学与康复 心理学 医学 电信 探测器 精神科
作者
Maged S. Al-Quraishi,Irraivan Elamvazuthi,Tong Boon Tang,Muhammad Al‐Qurishi,S. Parasuraman,Alberto Borboni
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (24): 27640-27650 被引量:29
标识
DOI:10.1109/jsen.2021.3119074
摘要

In this study, the fusion of cortical and muscular activities based on discriminant correlation analysis DCA) is developed to recognize bilateral lower limb movements. Electromyography (EMG) and electroencephalography (EEG) signals were concurrently recorded from 28 healthy subjects while performing various ankle joint movements. The two types of biosignals were fused at feature level, and five different classifiers were used for the purpose of movement recognition. The performance of the classifiers with multimodal and single modality data were assessed with five different sampling window sizes. The results demonstrated that the use of a multimodal approach results in an improvement of the classification accuracy with a linear discriminator analysis classifier (LDA). The highest recognition accuracy was 96.64 ± 4.48% with a window size of 250 sample points, in contrast with 89.99 ± 7.94% for EEG data alone. Furthermore, the multimodal fusion based on DCA was validated with fatigued EMG signal to investigate the robustness of the fusion technique against the muscular fatigue. In addition, the statistical analysis result demonstrates that the proposed fusion approach provides a substantial improvement in motion recognition accuracy 96.64 ± 4.48% (p < 0.0001) compared to method based on a single modality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怡然涵双完成签到 ,获得积分10
刚刚
刚刚
刚刚
季生发布了新的文献求助10
刚刚
佳思思完成签到,获得积分10
1秒前
123完成签到,获得积分20
1秒前
科研通AI5应助qll采纳,获得10
1秒前
小熊完成签到,获得积分20
1秒前
七米日光完成签到,获得积分10
2秒前
2秒前
黎黎发布了新的文献求助10
2秒前
咕噜咕噜完成签到 ,获得积分10
2秒前
英勇凝旋完成签到,获得积分10
3秒前
曲曲完成签到,获得积分10
3秒前
SYLH应助22222采纳,获得10
3秒前
ayan发布了新的文献求助10
3秒前
jiao完成签到,获得积分10
3秒前
3秒前
小马甲应助2021采纳,获得10
4秒前
4秒前
九儿完成签到,获得积分10
4秒前
木光发布了新的文献求助10
4秒前
甜美世平完成签到,获得积分20
5秒前
科目三应助萌酱采纳,获得10
5秒前
5秒前
Roxxane发布了新的文献求助10
6秒前
乃士完成签到,获得积分10
6秒前
6秒前
如意蚂蚁完成签到,获得积分10
6秒前
6秒前
阔达的傲MUMU完成签到 ,获得积分10
6秒前
chj发布了新的文献求助10
6秒前
言言言言完成签到,获得积分20
6秒前
7rey完成签到,获得积分10
7秒前
小熊发布了新的文献求助10
7秒前
iko完成签到,获得积分10
7秒前
诚心冬亦完成签到,获得积分10
7秒前
7秒前
舒心如凡完成签到,获得积分10
7秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940