DIAGNOSIS OF METABOLIC SYNDROME USING MACHINE LEARNING, STATISTICAL AND RISK QUANTIFICATION TECHNIQUES: A SYSTEMATIC LITERATURE REVIEW

计算机科学 机器学习 随机森林 人工智能 医学诊断 弗雷明翰风险评分 代谢综合征 支持向量机 决策树 系统回顾 梅德林 数据挖掘 统计 医学 糖尿病 内科学 数学 病理 内分泌学 法学 疾病 政治学
作者
Habeebah Adamu Kakudi,Loo Chu Kiong,Foong Ming Moy,Lim Chee Kau,Kitsuchart Pasupa
出处
期刊:Malaysian Journal of Computer Science [University of Malaya]
卷期号:34 (3): 221-241 被引量:2
标识
DOI:10.22452/mjcs.vol34no3.1
摘要

Metabolic syndrome (MetS), known to substantially lower the quality of life is associated with the increased incidence of non-communicable diseases (NCDs) such as type II diabetes mellitus, cardiovascular diseases and cancer. Evidence suggests that MetS accounts for the highest global mortality rate. For the early and accurate diagnosis of MetS, various statistical and ML techniques have been developed to support its clinical diagnosis. We performed a systematic review to investigate the various statistical and machine learning techniques (ML) that have been used to support the clinical diagnoses of MetS from the earliest studies to December 2020. Published literature relating to statistical and ML techniques for the diagnosis of MetS were identified by searching five major scientific databases: PubMed, Science Direct, IEEE Xplore, ACM digital library, and SpringerLink. Fifty-seven primary studies that met the inclusion criteria were obtained after screening titles, abstracts and full text. Three main types of techniques were identified: statistical (n=10), ML (n=44), and risk quantification (n=3). Standardized Z-score is the only statistical technique identified while the ML techniques include principal component analysis, confirmatory factory analysis, artificial neural networks, multiple logistics regression, decision trees, support vector machines, random forests, and Bayesian networks. The areal similarity degree risk quantification, framingham risk score and simScore were the three risk quantification techniques identified. Evidence suggests that evaluated ML techniques, with accuracy ranging from 75.5% to 98.9%, can more accurately diagnose MetS than both statistical and risk quantification techniques. The standardised Z-score is the most frequent statistical technique identified. However, highlighted proof based on performance measures indicate that the decision tree and artificial neural network ML techniques have the highest predictive performance for the prediction of MetS. Evidence suggests that more accurate diagnosis of MetS is required to evaluate the predictive performance of the statistical and ML techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KCMd发布了新的文献求助10
刚刚
baishui完成签到,获得积分20
1秒前
单薄的金鑫完成签到 ,获得积分10
1秒前
崔崔发布了新的文献求助10
1秒前
XIL完成签到,获得积分10
1秒前
Jjj发布了新的文献求助10
2秒前
博士加油完成签到,获得积分10
2秒前
充电宝应助wisher采纳,获得10
2秒前
CC发布了新的文献求助30
2秒前
3秒前
CodeCraft应助kagaminelen采纳,获得10
3秒前
Skyyi完成签到,获得积分10
3秒前
海洋之心发布了新的文献求助10
3秒前
李健应助冷酷莫茗采纳,获得10
3秒前
Dskelf完成签到,获得积分10
3秒前
xyz发布了新的文献求助10
4秒前
超级幻然完成签到,获得积分10
4秒前
英俊的铭应助夏至未至采纳,获得10
4秒前
4秒前
科研通AI5应助沉默芸采纳,获得10
5秒前
5秒前
dlem完成签到 ,获得积分10
6秒前
科目三应助典雅的俊驰采纳,获得10
6秒前
情怀应助baishui采纳,获得10
7秒前
7秒前
蝎子莱莱完成签到,获得积分10
8秒前
乐乐应助无限幻儿采纳,获得10
8秒前
wuwa完成签到,获得积分10
8秒前
8秒前
无拘无束发布了新的文献求助10
8秒前
Jjj完成签到,获得积分10
8秒前
hjl发布了新的文献求助10
9秒前
南希maggie完成签到,获得积分10
10秒前
打打应助XYZ采纳,获得10
10秒前
岚婘完成签到,获得积分10
11秒前
樱桃小贩完成签到,获得积分10
11秒前
11秒前
zhangxin完成签到,获得积分10
11秒前
夏硕士应助Distance采纳,获得10
12秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848343
求助须知:如何正确求助?哪些是违规求助? 3391055
关于积分的说明 10565200
捐赠科研通 3111522
什么是DOI,文献DOI怎么找? 1714830
邀请新用户注册赠送积分活动 825479
科研通“疑难数据库(出版商)”最低求助积分说明 775556