3D Graph-Connectivity Constrained Network for Hepatic Vessel Segmentation

计算机科学 分割 人工智能 图形 图像分割 模式识别(心理学)
作者
Ruikun Li,Yi-jie Huang,Huai Chen,Xiaoqing Liu,Yizhou Yu,Dahong Qian,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1251-1262 被引量:30
标识
DOI:10.1109/jbhi.2021.3118104
摘要

Segmentation of hepatic vessels from 3D CT images is necessary for accurate diagnosis and preoperative planning for liver cancer. However, due to the low contrast and high noises of CT images, automatic hepatic vessel segmentation is a challenging task. Hepatic vessels are connected branches containing thick and thin blood vessels, showing an important structural characteristic or a prior: the connectivity of blood vessels. However, this is rarely applied in existing methods. In this paper, we segment hepatic vessels from 3D CT images by utilizing the connectivity prior. To this end, a graph neural network (GNN) used to describe the connectivity prior of hepatic vessels is integrated into a general convolutional neural network (CNN). Specifically, a graph attention network (GAT) is first used to model the graphical connectivity information of hepatic vessels, which can be trained with the vascular connectivity graph constructed directly from the ground truths. Second, the GAT is integrated with a lightweight 3D U-Net by an efficient mechanism called the plug-in mode, in which the GAT is incorporated into the U-Net as a multi-task branch and is only used to supervise the training procedure of the U-Net with the connectivity prior. The GAT will not be used in the inference stage, and thus will not increase the hardware and time costs of the inference stage compared with the U-Net. Therefore, hepatic vessel segmentation can be well improved in an efficient mode. Extensive experiments on two public datasets show that the proposed method is superior to related works in accuracy and connectivity of hepatic vessel segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助kingwill采纳,获得20
1秒前
超级机器猫完成签到 ,获得积分10
1秒前
ROOOOOK完成签到,获得积分10
1秒前
陈孟发布了新的文献求助10
1秒前
2秒前
2秒前
orixero应助1111采纳,获得10
3秒前
西粤学发布了新的文献求助10
4秒前
小马甲应助大马哈鱼采纳,获得10
4秒前
爆米花应助leemonster采纳,获得10
4秒前
林先生发布了新的文献求助10
5秒前
研友_VZG7GZ应助Nomb1采纳,获得10
6秒前
znn发布了新的文献求助10
7秒前
xiaolei001应助沙场秋点兵采纳,获得10
8秒前
8秒前
8秒前
hachii发布了新的文献求助10
8秒前
wei完成签到,获得积分10
8秒前
专注的问寒应助西粤学采纳,获得20
9秒前
9秒前
隐形曼青应助Likz采纳,获得10
10秒前
Foremelon完成签到,获得积分10
11秒前
12秒前
12秒前
酷炫曼寒完成签到,获得积分20
13秒前
一颗葡萄完成签到 ,获得积分10
13秒前
衍灵之心完成签到,获得积分10
13秒前
14秒前
14秒前
lmt完成签到,获得积分10
15秒前
15秒前
大力魂幽发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
搜集达人应助Rosemary采纳,获得10
17秒前
17秒前
18秒前
18秒前
1111发布了新的文献求助10
18秒前
lmt发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786316
求助须知:如何正确求助?哪些是违规求助? 5693234
关于积分的说明 15469500
捐赠科研通 4915259
什么是DOI,文献DOI怎么找? 2645627
邀请新用户注册赠送积分活动 1593360
关于科研通互助平台的介绍 1547657