电化学
密度泛函理论
电解质
还原(数学)
化学
大规模运输
量子化学
电化学能量转换
化学物理
反应机理
电流密度
电压
计算化学
热力学
电极
生化工程
物理化学
催化作用
分子
物理
有机化学
工程类
数学
几何学
生物化学
量子力学
作者
Meenesh R. Singh,Jason D. Goodpaster,Adam Z. Weber,Martin Head‐Gordon,Alexis T. Bell
标识
DOI:10.1073/pnas.1713164114
摘要
Significance Chemical storage of solar energy can be achieved by electrochemical reduction of CO 2 to CO and H 2 , and subsequent conversion of this mixture to fuels. Identifying optimal conditions for electrochemical cell operation requires knowledge of the CO 2 reduction mechanism and the influence of all factors controlling cell performance. We report a multiscale model for predicting the current densities for H 2 and CO formation from first principles. Our approach brings together a quantum-chemical analysis of the reaction pathway, a microkinetic model of the reaction dynamics, and a continuum model for mass transport of all species through the electrolyte. This model is essential for identifying a physically correct representation of product current densities dependence on the cell voltage and CO 2 partial pressure.
科研通智能强力驱动
Strongly Powered by AbleSci AI