亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling multiscale causal interactions between spiking and field potential signals during behavior

Spike(软件开发) 计算机科学 因果关系(物理学) 领域(数学) 格兰杰因果关系 人工智能 人工神经网络 提炼听神经的脉冲 局部场电位 比例(比率) 机器学习 神经科学 数学 物理 软件工程 量子力学 纯数学 生物
作者
Chuanmeizhi Wang,Bijan Pesaran,Maryam M. Shanechi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (2): 026001-026001 被引量:15
标识
DOI:10.1088/1741-2552/ac4e1c
摘要

Abstract Objective. Brain recordings exhibit dynamics at multiple spatiotemporal scales, which are measured with spike trains and larger-scale field potential signals. To study neural processes, it is important to identify and model causal interactions not only at a single scale of activity, but also across multiple scales, i.e. between spike trains and field potential signals. Standard causality measures are not directly applicable here because spike trains are binary-valued but field potentials are continuous-valued. It is thus important to develop computational tools to recover multiscale neural causality during behavior, assess their performance on neural datasets, and study whether modeling multiscale causalities can improve the prediction of neural signals beyond what is possible with single-scale causality. Approach. We design a multiscale model-based Granger-like causality method based on directed information and evaluate its success both in realistic biophysical spike-field simulations and in motor cortical datasets from two non-human primates (NHP) performing a motor behavior. To compute multiscale causality, we learn point-process generalized linear models that predict the spike events at a given time based on the history of both spike trains and field potential signals. We also learn linear Gaussian models that predict the field potential signals at a given time based on their own history as well as either the history of binary spike events or that of latent firing rates. Main results. We find that our method reveals the true multiscale causality network structure in biophysical simulations despite the presence of model mismatch. Further, models with the identified multiscale causalities in the NHP neural datasets lead to better prediction of both spike trains and field potential signals compared to just modeling single-scale causalities. Finally, we find that latent firing rates are better predictors of field potential signals compared with the binary spike events in the NHP datasets. Significance. This multiscale causality method can reveal the directed functional interactions across spatiotemporal scales of brain activity to inform basic science investigations and neurotechnologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山橘月发布了新的文献求助10
51秒前
十三完成签到 ,获得积分10
1分钟前
kilig完成签到,获得积分10
1分钟前
lhl完成签到,获得积分10
1分钟前
滕靖完成签到,获得积分10
1分钟前
老石完成签到 ,获得积分10
1分钟前
ding应助Owllight采纳,获得10
1分钟前
李一诺完成签到 ,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
山橘月发布了新的文献求助10
2分钟前
3分钟前
哭泣灯泡完成签到,获得积分10
3分钟前
陈无敌完成签到 ,获得积分10
3分钟前
4分钟前
哈哈发布了新的文献求助10
4分钟前
YEM完成签到 ,获得积分10
4分钟前
打打应助青阳采纳,获得10
4分钟前
山橘月发布了新的文献求助10
4分钟前
4分钟前
小v的格洛米完成签到,获得积分10
4分钟前
青阳发布了新的文献求助10
4分钟前
青阳完成签到,获得积分10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
老马哥完成签到,获得积分0
4分钟前
哈哈完成签到,获得积分10
5分钟前
WANG发布了新的文献求助10
5分钟前
风起云涌龙完成签到 ,获得积分10
5分钟前
Vaclav完成签到 ,获得积分10
6分钟前
lynne完成签到 ,获得积分10
7分钟前
蜘蛛道理完成签到 ,获得积分10
7分钟前
8分钟前
香蕉觅云应助科研通管家采纳,获得10
8分钟前
8分钟前
山橘月发布了新的文献求助10
9分钟前
星期五完成签到 ,获得积分10
10分钟前
冉亦完成签到,获得积分10
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244192
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508