清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward Tailored Models on Private AIoT Devices: Federated Direct Neural Architecture Search

计算机科学 人工神经网络 建筑 人工智能 分布式计算 机器学习 边缘设备 以数据库为中心的体系结构 参考体系结构 软件体系结构 云计算 操作系统 艺术 软件 视觉艺术
作者
Chunhui Zhang,Xiaoming Yuan,Qianyun Zhang,Guangxu Zhu,Lei Cheng,Ning Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 17309-17322 被引量:18
标识
DOI:10.1109/jiot.2022.3154605
摘要

Neural networks often encounter various stringent resource constraints while deploying on edge devices. To tackle these problems with less human efforts, automated machine learning becomes popular in finding various neural architectures that fit diverse Artificial Intelligence of Things (AIoT) scenarios. Recently, to prevent the leakage of private information while enable automated machine intelligence, there is an emerging trend to integrate federated learning and neural architecture search (NAS). Although promising as it may seem, the coupling of difficulties from both tenets makes the algorithm development quite challenging. In particular, how to efficiently search the optimal neural architecture directly from massive nonindependent and identically distributed (non-IID) data among AIoT devices in a federated manner is a hard nut to crack. In this article, to tackle this challenge, by leveraging the advances in ProxylessNAS, we propose a federated direct neural architecture search (FDNAS) framework that allows for hardware-friendly NAS from non-IID data across devices. To further adapt to both various data distributions and different type of devices with heterogeneous embedded hardware platforms, inspired by meta-learning, a cluster federated direct neural architecture search (CFDNAS) framework is proposed to achieve device-aware NAS, in the sense that each device can learn a tailored deep learning model for its particular data distribution and hardware constraint. Extensive experiments on non-IID data sets have shown the state-of-the-art accuracy–efficiency tradeoffs achieved by the proposed solution in the presence of both data and device heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
回首不再是少年完成签到,获得积分0
5秒前
husky完成签到,获得积分10
9秒前
爆米花应助彩色的芷容采纳,获得10
9秒前
腰果虾仁完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
19秒前
陈醋塔塔完成签到,获得积分10
20秒前
研友Bn发布了新的文献求助10
21秒前
充电宝应助彩色的芷容采纳,获得10
27秒前
fatcat完成签到,获得积分10
38秒前
41秒前
量子星尘发布了新的文献求助10
46秒前
46秒前
ANEWKID发布了新的文献求助10
48秒前
WANGs完成签到 ,获得积分10
50秒前
51秒前
脑洞疼应助ANEWKID采纳,获得10
52秒前
ZXT完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
喝酸奶不舔盖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
smz完成签到 ,获得积分10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
1分钟前
朴实乐天完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
DD完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865751
求助须知:如何正确求助?哪些是违规求助? 3408356
关于积分的说明 10657160
捐赠科研通 3132318
什么是DOI,文献DOI怎么找? 1727549
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242