索拉非尼
基因敲除
药理学
胆固醇
肝细胞癌
癌症研究
细胞凋亡
化学
内科学
内分泌学
生物
医学
生物化学
作者
Xuetian Yue,Youzi Kong,Yankun Zhang,Min Sun,Shuyue Liu,Zhuanchang Wu,Lifen Gao,Xiaohong Liang,Chao Ma
摘要
Sorafenib resistance limits its survival benefit for treatment of hepatocellular carcinoma (HCC). Cholesterol metabolism is dysregulated in HCC, and its role in sorafenib resistance of HCC has not been fully elucidated. Aiming to elucidate this, in vitro and in vivo sorafenib resistant models were established. Sterol regulatory element binding transcription factor 2 (SREBF2), the key regulator of cholesterol metabolism, was activated in sorafenib resistant HepG2 and Huh7 cells. Knockdown of SREBF2 resensitized sorafenib resistant cells and xenografts tumors to sorafenib. Further study showed that SREBF2 positively correlated with StAR related lipid transfer domain containing 4 (STARD4) in our sorafenib resistant models and publicly available datasets. STARD4, mediating cholesterol trafficking, not only promoted proliferation and migration of HepG2 and Huh7 cells, but also increased sorafenib resistance in liver cancer. Mechanically, SREBF2 promoted expression of STARD4 by directly binding to its promoter region, leading to increased mitochondrial cholesterol levels and inhibition of mitochondrial cytochrome c release. Importantly, knockdown of SREBF2 or STARD4 decreased mitochondrial cholesterol levels and increased mitochondrial cytochrome c release, respectively. Moreover, overexpression of STARD4 reversed the effect of SREBF2 knockdown on mitochondrial cytochrome c release and sorafenib resistance. In conclusion, SREBF2 promotes STARD4 transcription, which in turn contributes to mitochondrial cholesterol transport and sorafenib resistance in HCC. Therefore, targeting the SREBF2-STARD4 axis would be beneficial to a subset of HCC patients with sorafenib resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI