亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001

卷积神经网络 Sørensen–骰子系数 人工智能 规范化(社会学) 模式识别(心理学) 掷骰子 试验装置 磁共振成像 分割 医学 深度学习 相似性(几何) 数据集 交叉验证 计算机科学 图像分割 统计 放射科 数学 图像(数学) 社会学 人类学
作者
Ying Liang,Karen Lee,Joseph Bovi,Joshua D. Palmer,Paul D. Brown,Vinai Gondi,Wolfgang A. Tomé,Tammie L.S. Benzinger,Minesh P. Mehta,X Allen Li
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:114 (3): 529-536 被引量:5
标识
DOI:10.1016/j.ijrobp.2022.06.081
摘要

Deep learning-based algorithms have been shown to be able to automatically detect and segment brain metastases (BMs) in magnetic resonance imaging, mostly based on single-institutional data sets. This work aimed to investigate the use of deep convolutional neural networks (DCNN) for BM detection and segmentation on a highly heterogeneous multi-institutional data set.A total of 407 patients from 98 institutions were randomly split into 326 patients from 78 institutions for training/validation and 81 patients from 20 institutions for unbiased testing. The data set contained T1-weighted gadolinium and T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging acquired on diverse scanners using different pulse sequences and various acquisition parameters. Several variants of 3-dimensional U-Net based DCNN models were trained and tuned using 5-fold cross validation on the training set. Performances of different models were compared based on Dice similarity coefficient for segmentation and sensitivity and false positive rate (FPR) for detection. The best performing model was evaluated on the test set.A DCNN with an input size of 64 × 64 × 64 and an equal number of 128 kernels for all convolutional layers using instance normalization was identified as the best performing model (Dice similarity coefficient 0.73, sensitivity 0.86, and FPR 1.9) in the 5-fold cross validation experiments. The best performing model demonstrated consistent behavior on the test set (Dice similarity coefficient 0.73, sensitivity 0.91, and FPR 1.7) and successfully detected 7 BMs (out of 327) that were missed during manual delineation. For large BMs with diameters greater than 12 mm, the sensitivity and FPR improved to 0.98 and 0.3, respectively.The DCNN model developed can automatically detect and segment brain metastases with reasonable accuracy, high sensitivity, and low FPR on a multi-institutional data set with nonprespecified and highly variable magnetic resonance imaging sequences. For large BMs, the model achieved clinically relevant results. The model is robust and may be potentially used in real-world situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h0jian09完成签到,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
不胜玖完成签到 ,获得积分10
1分钟前
清秀灵薇完成签到,获得积分10
1分钟前
一只榴莲发布了新的文献求助10
2分钟前
2分钟前
搜集达人应助一只榴莲采纳,获得10
2分钟前
2分钟前
zzzjh发布了新的文献求助10
2分钟前
11发布了新的文献求助10
2分钟前
11完成签到,获得积分10
2分钟前
kkk完成签到 ,获得积分10
2分钟前
辛勤夜柳发布了新的文献求助30
2分钟前
英姑应助苏打采纳,获得10
2分钟前
3分钟前
ljz发布了新的文献求助10
3分钟前
Li应助科研通管家采纳,获得10
3分钟前
bc应助科研通管家采纳,获得30
3分钟前
Li应助科研通管家采纳,获得10
3分钟前
3分钟前
绝尘发布了新的文献求助10
3分钟前
3分钟前
欣欣发布了新的文献求助10
3分钟前
3分钟前
一只榴莲发布了新的文献求助10
3分钟前
NexusExplorer应助一只榴莲采纳,获得10
3分钟前
璇别关注了科研通微信公众号
4分钟前
星星完成签到,获得积分20
4分钟前
4分钟前
璇别发布了新的文献求助10
4分钟前
科研通AI2S应助Jeongin采纳,获得10
4分钟前
ljz完成签到,获得积分20
4分钟前
骆十八完成签到,获得积分10
4分钟前
ljz发布了新的文献求助10
4分钟前
璇别完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329326
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714