A Multi-attribute Two-Sided Matching Decision Method Based on Multi-granularity Probabilistic Linguistic MARCOS

概率逻辑 粒度 匹配(统计) 计算机科学 人工智能 数据挖掘 数学 统计 操作系统
作者
Jiali Lu,Jing Ni
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-16 被引量:4
标识
DOI:10.1155/2022/5971597
摘要

With the complexity of the matching environment, individual differences in matching objects and the uncertainty of evaluation information should be considered. The probabilistic linguistic term set (PLTS) is a useful tool to describe the uncertainty and limited cognition of matching objects. Thus, this paper proposes a multi-attribute two-sided matching method based on multi-granularity probabilistic linguistic MARCOS. First, we use a probabilistic linguistic term set with different granularities to express the evaluation information of different matching objects. Then, a conversion function is used to unify different granularity probabilistic linguistic terms. Second, a linguistic scale function is introduced to improve the expectation function, deviation degree, and distance of PLTS. The processed probabilistic linguistic evaluation information is transformed into accurate utility values through the transformation function. The evaluation attribute weights are determined by PLTS distance entropy. Based on this, this paper proposes a multi-granularity probabilistic linguistic MARCOS method to obtain the two-sided satisfaction degree. Finally, an optimization model which aims to maximize the overall satisfaction degree of matching objects by considering the stable matching condition is then established and solved to determine the matching between matching objects. The multi-objective two-sided matching model is constructed with the objective of maximizing the two-sided satisfaction degree. A case study of the service outsourcing matching is presented to validate the proposed method. The comparative analyses and discussions are also provided to demonstrate its effectiveness and scientific character.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
核桃应助灯灯采纳,获得10
4秒前
风中小懒虫完成签到,获得积分10
5秒前
鲤鱼奇异果完成签到,获得积分10
8秒前
LULU发布了新的文献求助10
8秒前
science_idot完成签到,获得积分10
8秒前
sun发布了新的文献求助20
8秒前
9秒前
哈哈哈哈发布了新的文献求助10
10秒前
11秒前
崔尔蓉完成签到,获得积分10
11秒前
11秒前
慕青应助危机的银耳汤采纳,获得10
12秒前
英姑应助Master_Ye采纳,获得10
13秒前
13秒前
李紫硕应助风鸢采纳,获得20
14秒前
16秒前
茶茶发布了新的文献求助10
16秒前
秋作完成签到,获得积分10
17秒前
18秒前
善学以致用应助猪猪hero采纳,获得10
18秒前
修管子完成签到 ,获得积分0
19秒前
yc发布了新的文献求助10
19秒前
玄策发布了新的文献求助10
19秒前
汉堡包应助Halo采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
在水一方应助你李哥采纳,获得10
26秒前
刘晓倩发布了新的文献求助10
26秒前
搞怪网络发布了新的文献求助10
27秒前
27秒前
BINGBING发布了新的文献求助20
29秒前
KeYang完成签到,获得积分10
30秒前
shiqiang mu应助odid采纳,获得10
30秒前
情怀应助微垣采纳,获得10
30秒前
30秒前
yc完成签到,获得积分10
32秒前
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870623
求助须知:如何正确求助?哪些是违规求助? 3412797
关于积分的说明 10681034
捐赠科研通 3137224
什么是DOI,文献DOI怎么找? 1730697
邀请新用户注册赠送积分活动 834310
科研通“疑难数据库(出版商)”最低求助积分说明 781133