Deep learning based diagnosis of Parkinson’s Disease using diffusion magnetic resonance imaging

卷积神经网络 磁共振弥散成像 部分各向异性 人工智能 模式识别(心理学) 计算机科学 贪婪算法 磁共振成像 算法 医学 放射科
作者
Hengling Zhao,Chih‐Chien Tsai,Mingyi Zhou,Yipeng Liu,Yao-Liang Chen,Fan Huang,Yu‐Chun Lin,Jiun‐Jie Wang
出处
期刊:Brain Imaging and Behavior [Springer Nature]
卷期号:16 (4): 1749-1760 被引量:28
标识
DOI:10.1007/s11682-022-00631-y
摘要

The diagnostic performance of a combined architecture on Parkinson's disease using diffusion tensor imaging was evaluated. A convolutional neural network was trained from multiple parcellated brain regions. A greedy algorithm was proposed to combine the models from individual regions into a complex one. Total 305 Parkinson's disease patients (aged 59.9±9.7 years old) and 227 healthy control subjects (aged 61.0±7.4 years old) were enrolled from 3 retrospective studies. The participants were divided into training with ten-fold cross-validation (N = 432) and an independent blind dataset (N = 100). Diffusion-weighted images were acquired from a 3T scanner. Fractional anisotropy and mean diffusivity were calculated and was subsequently parcellated into 90 cerebral regions of interest based on the Automatic Anatomic Labeling template. A convolutional neural network was implemented which contained three convolutional blocks and a fully connected layer. Each convolutional block consisted of a convolutional layer, activation layer, and pooling layer. This model was trained for each individual region. A greedy algorithm was implemented to combine multiple regions as the final prediction. The greedy algorithm predicted the area under curve of 94.1±3.2% from the combination of fractional anisotropy from 22 regions. The model performance analysis showed that the combination of 9 regions is equivalent. The best area under curve was 74.7±5.4% from the right postcentral gyrus. The current study proposed an architecture of convolutional neural network and a greedy algorithm to combine from multiple regions. With diffusion tensor imaging, the algorithm showed the potential to distinguish patients with Parkinson's disease from normal control with satisfactory performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyms发布了新的文献求助30
刚刚
2秒前
张海新发布了新的文献求助10
2秒前
酷酷元风完成签到,获得积分10
3秒前
zhaoM完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
annafan发布了新的文献求助20
4秒前
5秒前
haochi发布了新的文献求助10
6秒前
朱祝祝完成签到,获得积分10
7秒前
陈化十发布了新的文献求助10
7秒前
醒醒发布了新的文献求助10
7秒前
瘦瘦的鬼神完成签到,获得积分10
8秒前
8秒前
8秒前
猫猫虫完成签到,获得积分10
9秒前
温柔的难破完成签到 ,获得积分10
9秒前
10秒前
安小磊发布了新的文献求助10
10秒前
无极微光应助年轻小之采纳,获得20
11秒前
12秒前
13秒前
arizaki7发布了新的文献求助10
13秒前
科研通AI6应助陈化十采纳,获得10
13秒前
调皮的水杯完成签到,获得积分20
15秒前
15秒前
田様应助机器猫采纳,获得30
16秒前
HDrinnk发布了新的文献求助10
16秒前
17秒前
小乐完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
科目三应助arizaki7采纳,获得10
20秒前
slimayw12发布了新的文献求助10
21秒前
yangbin710发布了新的文献求助10
22秒前
genesquared完成签到,获得积分10
22秒前
22秒前
Zox完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428347
求助须知:如何正确求助?哪些是违规求助? 4542333
关于积分的说明 14180122
捐赠科研通 4459971
什么是DOI,文献DOI怎么找? 2445552
邀请新用户注册赠送积分活动 1436723
关于科研通互助平台的介绍 1413888