Review of fault detection techniques for predictive maintenance

故障检测与隔离 背景(考古学) 计算机科学 清晰 机器学习 预测性维护 人工智能 鉴定(生物学) 断层(地质) 异常检测 数据挖掘 工程类 可靠性工程 古生物学 生物化学 地质学 地震学 执行机构 化学 生物 植物
作者
D. Divya,M. Bhasi,M. B. Santosh Kumar
出处
期刊:Journal of Quality in Maintenance Engineering [Emerald Publishing Limited]
卷期号:29 (2): 420-441 被引量:36
标识
DOI:10.1108/jqme-10-2020-0107
摘要

Purpose This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive maintenance. Opportunities and challenges in developing anomaly detection algorithms for predictive maintenance and unexplored areas in this context are also discussed. Design/methodology/approach For conducting a systematic review on the state-of-the-art algorithms in fault detection for predictive maintenance, review papers from the years 2017–2021 available in the Scopus database were selected. A total of 93 papers were chosen. They are classified under electrical and electronics, civil and constructions, automobile, production and mechanical. In addition to this, the paper provides a detailed discussion of various fault-detection algorithms that can be categorised under supervised, semi-supervised, unsupervised learning and traditional statistical method along with an analysis of various forms of anomalies prevalent across different sectors of industry. Findings Based on the literature reviewed, seven propositions with a focus on the following areas are presented: need for a uniform framework while scaling the number of sensors; the need for identification of erroneous parameters; why there is a need for new algorithms based on unsupervised and semi-supervised learning; the importance of ensemble learning and data fusion algorithms; the necessity of automatic fault diagnostic systems; concerns about multiple fault detection; and cost-effective fault detection. These propositions shed light on the unsolved issues of predictive maintenance using fault detection algorithms. A novel architecture based on the methodologies and propositions gives more clarity for the reader to further explore in this area. Originality/value Papers for this study were selected from the Scopus database for predictive maintenance in the field of fault detection. Review papers published in this area deal only with methods used to detect anomalies, whereas this paper attempts to establish a link between different industrial domains and the methods used in each industry that uses fault detection for predictive maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢完成签到,获得积分10
2秒前
hellokitty完成签到,获得积分10
5秒前
cdercder应助oleskarabach采纳,获得10
7秒前
cdercder应助oleskarabach采纳,获得10
7秒前
火星上的之卉完成签到 ,获得积分10
15秒前
大力的诗蕾完成签到 ,获得积分10
18秒前
CLTTT完成签到,获得积分10
21秒前
Cai完成签到,获得积分10
30秒前
颜陌完成签到,获得积分10
34秒前
37秒前
崩溃完成签到,获得积分10
37秒前
zmy完成签到,获得积分10
37秒前
DDDazhi完成签到,获得积分10
38秒前
zmy发布了新的文献求助30
43秒前
54秒前
天天快乐应助斯文的傲珊采纳,获得10
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
alanbike完成签到,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
小瓶盖完成签到 ,获得积分10
1分钟前
Never stall完成签到 ,获得积分10
1分钟前
隐形曼青应助麦冬粑粑采纳,获得10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
哥哥完成签到,获得积分10
1分钟前
贼吖完成签到 ,获得积分10
1分钟前
河鲸完成签到 ,获得积分10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
共享精神应助俏皮的修杰采纳,获得20
2分钟前
Jankim完成签到 ,获得积分10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
谦让的牛排完成签到 ,获得积分10
2分钟前
热狗完成签到 ,获得积分10
2分钟前
超级的千青完成签到 ,获得积分10
2分钟前
刘五十七完成签到 ,获得积分10
2分钟前
墨泉完成签到 ,获得积分10
2分钟前
Hofury完成签到 ,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244310
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544