Rotation-Invariant Point Cloud Representation for 3-D Model Recognition

点云 不变(物理) 旋转(数学) 代表(政治) 计算机科学 人工智能 数学 几何学 政治 政治学 法学 数学物理
作者
Yan Wang,Yining Zhao,Shihui Ying,Shaoyi Du,Yue Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (10): 10948-10956 被引量:6
标识
DOI:10.1109/tcyb.2022.3157593
摘要

Three-dimensional (3-D) data have many applications in the field of computer vision and a point cloud is one of the most popular modalities. Therefore, how to establish a good representation for a point cloud is a core issue in computer vision, especially for 3-D object recognition tasks. Existing approaches mainly focus on the invariance of representation under the group of permutations. However, for point cloud data, it should also be rotation invariant. To address such invariance, in this article, we introduce a relation of equivalence under the action of rotation group, through which the representation of point cloud is located in a homogeneous space. That is, two point clouds are regarded as equivalent when they are only different from a rotation. Our network is flexibly incorporated into existing frameworks for point clouds, which guarantees the proposed approach to be rotation invariant. Besides, a sufficient analysis on how to parameterize the group SO (3) into a convolutional network, which captures a relation with all rotations in 3-D Euclidean space $\mathbb {R}^{3}$ . We select the optimal rotation as the best representation of point cloud and propose a solution for minimizing the problem on the rotation group SO (3) by using its geometric structure. To validate the rotation invariance, we combine it with two existing deep models and evaluate them on ModelNet40 dataset and its subset ModelNet10. Experimental results indicate that the proposed strategy improves the performance of those existing deep models when the data involve arbitrary rotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空发布了新的文献求助10
1秒前
Orange应助majiko采纳,获得10
2秒前
小马甲应助rain采纳,获得10
2秒前
2秒前
3秒前
完美栾发布了新的文献求助10
3秒前
wlqydyxf完成签到,获得积分10
3秒前
3秒前
科研通AI5应助上官翠花采纳,获得10
4秒前
guoke发布了新的文献求助20
4秒前
睡觉的猫发布了新的文献求助10
6秒前
大模型应助真的OK采纳,获得10
6秒前
6秒前
koi发布了新的文献求助10
7秒前
CodeCraft应助义气夜山采纳,获得10
8秒前
Transition完成签到,获得积分10
8秒前
平常水蜜桃完成签到 ,获得积分10
9秒前
英俊的铭应助完美栾采纳,获得10
9秒前
小二郎应助ljx采纳,获得10
9秒前
yoga发布了新的文献求助10
10秒前
铭铭就完成签到 ,获得积分10
10秒前
brain_drJ发布了新的文献求助10
10秒前
10秒前
李硕完成签到,获得积分10
11秒前
Robinson发布了新的文献求助10
11秒前
zzjjww完成签到,获得积分10
11秒前
12秒前
Wayne72完成签到,获得积分0
12秒前
传奇3应助飞快的幼南采纳,获得10
13秒前
13秒前
14秒前
咖啡头发完成签到,获得积分10
14秒前
许思真完成签到,获得积分10
14秒前
14秒前
汉堡包应助一吃一大碗采纳,获得10
15秒前
山野完成签到,获得积分10
15秒前
16秒前
16秒前
云歇雨住完成签到,获得积分10
16秒前
老王完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4563796
求助须知:如何正确求助?哪些是违规求助? 3988165
关于积分的说明 12349069
捐赠科研通 3659171
什么是DOI,文献DOI怎么找? 2016304
邀请新用户注册赠送积分活动 1050784
科研通“疑难数据库(出版商)”最低求助积分说明 938722