Rotation-Invariant Point Cloud Representation for 3-D Model Recognition

点云 不变(物理) 旋转(数学) 代表(政治) 计算机科学 人工智能 数学 几何学 政治 政治学 法学 数学物理
作者
Yan Wang,Yining Zhao,Shihui Ying,Shaoyi Du,Yue Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (10): 10948-10956 被引量:6
标识
DOI:10.1109/tcyb.2022.3157593
摘要

Three-dimensional (3-D) data have many applications in the field of computer vision and a point cloud is one of the most popular modalities. Therefore, how to establish a good representation for a point cloud is a core issue in computer vision, especially for 3-D object recognition tasks. Existing approaches mainly focus on the invariance of representation under the group of permutations. However, for point cloud data, it should also be rotation invariant. To address such invariance, in this article, we introduce a relation of equivalence under the action of rotation group, through which the representation of point cloud is located in a homogeneous space. That is, two point clouds are regarded as equivalent when they are only different from a rotation. Our network is flexibly incorporated into existing frameworks for point clouds, which guarantees the proposed approach to be rotation invariant. Besides, a sufficient analysis on how to parameterize the group SO (3) into a convolutional network, which captures a relation with all rotations in 3-D Euclidean space $\mathbb {R}^{3}$ . We select the optimal rotation as the best representation of point cloud and propose a solution for minimizing the problem on the rotation group SO (3) by using its geometric structure. To validate the rotation invariance, we combine it with two existing deep models and evaluate them on ModelNet40 dataset and its subset ModelNet10. Experimental results indicate that the proposed strategy improves the performance of those existing deep models when the data involve arbitrary rotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助陈椅子的求学采纳,获得10
刚刚
1秒前
大个应助li采纳,获得10
1秒前
Arthur完成签到 ,获得积分10
1秒前
1秒前
博思好行完成签到,获得积分10
2秒前
十里桃花不徘徊完成签到,获得积分10
2秒前
哇哈哈哈完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
二十七垚完成签到,获得积分10
3秒前
4秒前
4秒前
krk发布了新的文献求助10
4秒前
彭于晏应助沂静采纳,获得10
4秒前
小贝壳要快乐吖完成签到,获得积分10
4秒前
博思好行发布了新的文献求助10
5秒前
6秒前
欢呼便当完成签到,获得积分10
10秒前
10秒前
科研通AI5应助拓跋问儿采纳,获得10
10秒前
Ton汤发布了新的文献求助10
11秒前
专注无施完成签到,获得积分10
11秒前
ymu完成签到,获得积分20
12秒前
Jackie_Li完成签到,获得积分10
13秒前
13秒前
13秒前
妮妮爱smile完成签到,获得积分10
14秒前
温暖发布了新的文献求助10
14秒前
Shan5完成签到,获得积分10
15秒前
叶叶完成签到,获得积分10
15秒前
隐形曼青应助yydsyk采纳,获得10
15秒前
思源应助QXS采纳,获得10
16秒前
niu发布了新的文献求助10
16秒前
小李完成签到,获得积分10
16秒前
要减肥念真完成签到,获得积分10
17秒前
kaikai完成签到,获得积分10
17秒前
18秒前
秋裤批发完成签到 ,获得积分10
18秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830751
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477730
捐赠科研通 3093242
什么是DOI,文献DOI怎么找? 1702418
邀请新用户注册赠送积分活动 819024
科研通“疑难数据库(出版商)”最低求助积分说明 771203