Rotation-Invariant Point Cloud Representation for 3-D Model Recognition

点云 不变(物理) 旋转(数学) 代表(政治) 计算机科学 人工智能 数学 几何学 政治 政治学 法学 数学物理
作者
Yan Wang,Yining Zhao,Shihui Ying,Shaoyi Du,Yue Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (10): 10948-10956 被引量:6
标识
DOI:10.1109/tcyb.2022.3157593
摘要

Three-dimensional (3-D) data have many applications in the field of computer vision and a point cloud is one of the most popular modalities. Therefore, how to establish a good representation for a point cloud is a core issue in computer vision, especially for 3-D object recognition tasks. Existing approaches mainly focus on the invariance of representation under the group of permutations. However, for point cloud data, it should also be rotation invariant. To address such invariance, in this article, we introduce a relation of equivalence under the action of rotation group, through which the representation of point cloud is located in a homogeneous space. That is, two point clouds are regarded as equivalent when they are only different from a rotation. Our network is flexibly incorporated into existing frameworks for point clouds, which guarantees the proposed approach to be rotation invariant. Besides, a sufficient analysis on how to parameterize the group SO (3) into a convolutional network, which captures a relation with all rotations in 3-D Euclidean space $\mathbb {R}^{3}$ . We select the optimal rotation as the best representation of point cloud and propose a solution for minimizing the problem on the rotation group SO (3) by using its geometric structure. To validate the rotation invariance, we combine it with two existing deep models and evaluate them on ModelNet40 dataset and its subset ModelNet10. Experimental results indicate that the proposed strategy improves the performance of those existing deep models when the data involve arbitrary rotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了一李应助肖飞鱼采纳,获得10
刚刚
yangtong完成签到,获得积分10
刚刚
Yewpanda07应助尚未千万里采纳,获得10
1秒前
英俊的铭应助尚未千万里采纳,获得10
1秒前
1秒前
风清扬应助清明采纳,获得30
1秒前
hongxuezhi完成签到,获得积分10
2秒前
诚心的芷发布了新的文献求助10
3秒前
刻苦从阳完成签到,获得积分10
3秒前
4秒前
情怀应助安陌煜采纳,获得10
6秒前
慕青应助一别如斯采纳,获得10
6秒前
QY发布了新的文献求助10
6秒前
哆啦A梦完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
混子完成签到,获得积分10
7秒前
7秒前
7秒前
所所应助现代的迎夏采纳,获得10
8秒前
语风完成签到,获得积分10
9秒前
9秒前
夕夕成玦完成签到,获得积分10
9秒前
9秒前
小李子完成签到 ,获得积分10
10秒前
10秒前
10秒前
查文献的见纤关注了科研通微信公众号
10秒前
lllzzz发布了新的文献求助10
11秒前
香蕉觅云应助Mayforth采纳,获得30
12秒前
苏东方发布了新的文献求助10
12秒前
J曌Chen完成签到,获得积分10
12秒前
万能图书馆应助SAINT采纳,获得10
13秒前
从容雨筠发布了新的文献求助10
13秒前
13秒前
风中楷瑞发布了新的文献求助10
14秒前
15秒前
舒适的尔容完成签到,获得积分10
16秒前
Akim应助思思采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027345
求助须知:如何正确求助?哪些是违规求助? 3566919
关于积分的说明 11353015
捐赠科研通 3298047
什么是DOI,文献DOI怎么找? 1816134
邀请新用户注册赠送积分活动 890569
科研通“疑难数据库(出版商)”最低求助积分说明 813692