Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery

激光雷达 天蓬 遥感 树冠 环境科学 卫星图像 卫星 封面(代数) 地理 机械工程 工程类 航空航天工程 考古
作者
Qin Ma,Yanjun Su,Qinghua Guo
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:10 (9): 4225-4236 被引量:144
标识
DOI:10.1109/jstars.2017.2711482
摘要

Canopy cover is an important forest structure parameter for many applications in ecology, hydrology, and forest management. Light detection and ranging (LiDAR) is a promising tool for estimating canopy cover because it can penetrate forest canopy. Various algorithms have been developed to calculate canopy cover from LiDAR data. However, little attention was paid to evaluating how different factors, such as estimation algorithm, LiDAR point density and scan angle, influence canopy cover estimates; and how LiDAR-derived canopy cover differs from estimates using traditional methods, such as field measurements, aerial and satellite imagery. In this study, we systematically compared canopy cover estimations from LiDAR data, quick field measurements, aerial imagery, and satellite imagery using different algorithms. The results show that LiDAR-derived canopy cover estimates are marginally influenced by the estimation algorithms. LiDAR data with a point density of 1 point/m 2 can generate comparable canopy cover estimates to data with a higher density. The uncertainty of canopy cover estimates from LiDAR data increased drastically as scan angles exceed 12°. Plot-level canopy cover estimates derived from quick field measurements do not have strong correlation with LiDAR-derived estimations. Both the aerial imagery-derived and satellite imagery-derived canopy cover estimates are comparable to LiDAR-derived canopy cover estimates at the forest stand scale, but tend to be overestimated in sparse forests and be underestimated in dense forests, particularly for the aerial imagery-derived estimates. The results from this study can provide practical guidance for the selection of data sources, sampling schemes, and estimation methods in regional canopy cover mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屎蛋完成签到,获得积分20
刚刚
ZXD1989完成签到 ,获得积分10
刚刚
可靠半青完成签到 ,获得积分10
1秒前
2秒前
腼腆的薯片完成签到 ,获得积分10
2秒前
3秒前
吉吉发布了新的文献求助10
3秒前
情怀应助zyx采纳,获得10
4秒前
4秒前
田...完成签到,获得积分10
4秒前
Dale完成签到 ,获得积分10
5秒前
林北关注了科研通微信公众号
5秒前
5秒前
勤劳代亦完成签到,获得积分10
5秒前
霸气千易完成签到,获得积分10
6秒前
Tom完成签到 ,获得积分10
6秒前
外向的电话完成签到,获得积分20
6秒前
威武的海燕完成签到,获得积分10
6秒前
哲寒完成签到,获得积分10
7秒前
包容的香菱完成签到,获得积分20
7秒前
DueDue0327发布了新的文献求助10
8秒前
尊敬的雨竹完成签到,获得积分10
8秒前
不吃芒果发布了新的文献求助10
10秒前
早睡早起身体好Q完成签到 ,获得积分10
10秒前
真真发布了新的文献求助10
11秒前
木齐Jay完成签到,获得积分10
12秒前
坚定尔蓝完成签到,获得积分10
12秒前
12秒前
12秒前
龙抬头发布了新的文献求助10
12秒前
13秒前
汉堡包应助果ghj采纳,获得10
14秒前
15秒前
0001完成签到,获得积分10
15秒前
顾矜应助何双双采纳,获得10
16秒前
搜集达人应助赛特新思采纳,获得10
16秒前
打打应助一漾采纳,获得10
17秒前
娃哈哈完成签到 ,获得积分10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272436
求助须知:如何正确求助?哪些是违规求助? 4429688
关于积分的说明 13789668
捐赠科研通 4308183
什么是DOI,文献DOI怎么找? 2364041
邀请新用户注册赠送积分活动 1359627
关于科研通互助平台的介绍 1322708