李雅普诺夫指数
多项式混沌
数学
混乱的
分歧(语言学)
应用数学
非线性系统
水准点(测量)
概率逻辑
弹道
多项式的
李雅普诺夫函数
收敛速度
混沌同步
噪音(视频)
算法
趋同(经济学)
概率分布
计算机科学
动力系统理论
数学优化
指数函数
估计理论
颗粒过滤器
控制理论(社会学)
蝴蝶效应
不确定度量化
Kullback-Leibler散度
洛伦兹系统
可扩展性
指数增长
混沌理论
代表(政治)
作者
Adrián García-Gutiérrez,Carlos Rubio,Diego Domínguez,Deibi López
出处
期刊:Chaos
[American Institute of Physics]
日期:2026-01-01
卷期号:36 (1)
摘要
The Largest Lyapunov Exponent (LLE) is a fundamental diagnostic of chaotic behavior in nonlinear dynamical systems, quantifying the exponential divergence of nearby trajectories. Classical computational approaches, such as Wolf’s algorithm, track individual particle trajectories to estimate the LLE, but these techniques face challenges related to noise sensitivity, computational efficiency, and scalability to high-dimensional systems. This work introduces a novel variance-based methodology for computing the LLE using intrusive polynomial chaos (IPC), an uncertainty quantification technique that evolves the probability distribution of initial conditions under deterministic dynamics rather than tracking discrete trajectories. The key innovation is extracting the LLE from the exponential growth rate of ensemble variance, which connects deterministic chaos with probabilistic descriptions. Validation against the classical trajectory-based algorithm is performed on three benchmark chaotic systems: the three-dimensional Lorenz and Rössler attractors, and a six-dimensional system from Al-Azzawi and Al-Obeidi, demonstrating that the IPC approach achieves comparable accuracy and convergence rates while offering the distinct advantage of directly computing the full statistical structure of ensemble dynamics. Comparison of convergence histories, probability density functions of instantaneous Lyapunov exponents, and statistical error measures confirms excellent agreement between the proposed IPC-based methodology and established algorithms. The results indicate that variance-based LLE estimation via polynomial chaos is a robust and viable alternative to trajectory-based methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI