材料科学
范德瓦尔斯力
海水淡化
亚稳态
超晶格
化学物理
电极
纳米技术
相(物质)
离子
电化学
电阻率和电导率
化学工程
工作(物理)
电导率
工程物理
光电子学
扩散
自组装
三元运算
凝聚态物理
结晶
纳米尺度
海水淡化
分子工程
热力学
相图
作者
Shirui Shu,Zhi Zhang,Xiaoyu Ye,Zejun Li,Xiao-li Zhou
标识
DOI:10.1002/adfm.202524845
摘要
Abstract Electrochemical deionization (EDI) is a promising technology for mitigating global water scarcity. Metallic 1T‐MoS 2 represents an ideal electrode candidate owing to its exceptional electrical conductivity and weakened interlayer van der Waals (vdW) forces. However, the thermodynamic instability of 1T‐MoS 2 poses a significant challenge to its synthesis, hindering practical implementation. Herein, a vdW wrapping strategy is proposed to construct a 1T‐MoS 2 /C superlattice with alternating layers of 1T‐MoS 2 and carbon. This vdW‐confined carbon wrapping concurrently stabilizes the metastable 1T phase to enhance conductivity and engineers the interlayer spacing to facilitate accessible ion transport pathways, thereby boosting ion diffusion kinetics and cycling durability. The resulting architecture delivers outstanding desalination performance (51.14 mg g −1 desalination capacity, 9.36 mg g −1 min −1 desalination rate), rivaling the top‐tier reported EDI electrode materials. Furthermore, the 1T‐MoS 2 /C superlattice exhibits superior cycling stability, retaining over 90% of desalination capacity over cycling tests. This work establishes a novel design principle for stabilizing metastable materials and engineering high‐performance electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI