清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment

计算机科学 特征选择 运动表象 脑电图 物联网 人工智能 特征(语言学) 选择(遗传算法) 信号(编程语言) 互联网 模式识别(心理学) 机器学习 语音识别 脑-机接口 万维网 神经科学 哲学 程序设计语言 生物 语言学
作者
Ranjit Chatterjee,Tanmoy Maitra,SK Hafizul Islam,Mohammad Mehedi Hassan,Atif Alamri,Giancarlo Fortino
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:98: 419-434 被引量:76
标识
DOI:10.1016/j.future.2019.01.048
摘要

Abstract In Internet of Medical Things (IoMT) environment, feature selection is an efficient way of identifying the most discriminant health-related features from the original feature-set. Feature selection not only finds the best informative features, but also helps in reducing the overall dimensions of the given dataset. In this paper, the actual feature-set is obtained from Brain Computer Interface (BCI) Competition-II Dataset-III motor-imagery electroencephalogram (EEG) signal using the Adaptive Auto-regressive (AAR) feature extraction technique. Based on the order (number of AR coefficients) of the AAR algorithm, two variants of datasets have been generated: 12 ( o r d e r = 6 per electrode) and 24 ( o r d e r = 12 per electrode) AAR features datasets. Here, a new fuzzified version of discernibility matrix has been proposed to determine a subset of features, which provides the best classification accuracy. In order to find the best feature subset, various types of dissimilarity measures have been used and compared with one another in our proposed fuzzy discernibility matrix (FDM) based feature selection technique. We have implemented the proposed algorithm on the given datasets using both the holdout technique as well as the 10-fold cross-validation in our study. The performances of the selected feature-subsets are evaluated based on accuracies using the Support Vector Machine (SVM) and Ensemble variants of classifiers. The empirical results obtained from our experiments in this paper is competitive in terms of accuracy and outperformed the other popular t-test, Kullback–Leibler Divergence (KLD), Bhattacharyya distance and Gini index based feature selection techniques. Our proposed FDM based feature selection algorithm using holdout technique provides 80% and 78.57% accuracies for the 12 and 24 features AAR datasets respectively. The results obtained in the holdout technique with only 50% of the best discriminant features are even better than the performances obtained while using the original feature-sets (without using any feature selection technique). Again, it gives 78.57% and 75.57% mean-accuracies from 5 × 10-fold cross-validations using only 6and 12 most discriminant AAR features from the actual 12 & 24 features-sets respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
9秒前
cdercder应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
15秒前
18秒前
科研狗完成签到 ,获得积分10
20秒前
语亦菲扬921完成签到,获得积分10
24秒前
Rwslpy完成签到 ,获得积分10
34秒前
Skywalk满天星完成签到,获得积分10
35秒前
发嗲的慕蕊完成签到 ,获得积分10
39秒前
lql完成签到 ,获得积分10
40秒前
digger2023完成签到 ,获得积分10
55秒前
牛马完成签到 ,获得积分10
1分钟前
shyxia完成签到 ,获得积分10
1分钟前
勤恳的TT完成签到 ,获得积分10
1分钟前
CHEN完成签到 ,获得积分10
1分钟前
czzlancer完成签到,获得积分10
1分钟前
孳孳为善6387完成签到,获得积分10
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
he完成签到 ,获得积分10
1分钟前
1分钟前
ira完成签到,获得积分10
1分钟前
kenchilie完成签到 ,获得积分10
1分钟前
阿星捌完成签到 ,获得积分10
1分钟前
木南完成签到 ,获得积分10
1分钟前
霍霍完成签到 ,获得积分10
1分钟前
bono完成签到 ,获得积分10
2分钟前
涛1完成签到 ,获得积分10
2分钟前
2分钟前
Zhaoyuemeng发布了新的文献求助20
2分钟前
年轻的笙完成签到,获得积分10
2分钟前
大个应助ybwei2008_163采纳,获得10
2分钟前
弧光完成签到 ,获得积分10
2分钟前
zhangkx23发布了新的文献求助10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
lily336699完成签到,获得积分10
3分钟前
大模型应助ybwei2008_163采纳,获得10
3分钟前
研究啥完成签到,获得积分10
3分钟前
3分钟前
ybwei2008_163发布了新的文献求助10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385538
关于积分的说明 10540750
捐赠科研通 3106152
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308