Estimation of Forest Structural Parameters Using UAV-LiDAR Data and a Process-Based Model in Ginkgo Planted Forests

银杏 激光雷达 遥感 过程(计算) 计算机科学 数据建模 环境科学 人工智能 地理 地质学 数据库 操作系统 古生物学
作者
Lin Cao,Kun Liu,Xin Shen,Xiangqian Wu,Hao Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (11): 4175-4190 被引量:41
标识
DOI:10.1109/jstars.2019.2918572
摘要

Developing an accurate model for estimating the forest structural parameters of planted forests is crucial for forest productivity predictions and can provide a better understanding of the carbon cycle under climate change. Unmanned aerial vehicle-light detecting and ranging (UAV-LiDAR) systems represents a promising active remote sensing technology that has the potential to be used for forest inventories. In addition, the process-based model, physiological principles predicting growth (3-PG), which is based on physiological principles and environmental factors, has been applied to estimate the growth of even-aged, mono-specific forests under the effect of different management levels, site conditions, and climate change. In this study, the performance of UAV-LiDAR metrics was assessed and applied to estimate forest structural parameters using a multivariate linear regression (MLR) method. The 3-PG was parameterized and used to simulate the diameter at breast height, stem density, volume and above-ground biomass of a planted ginkgo forest in eastern China. In addition, a sensitivity analysis was conducted on the 3-PG model's input parameters. The results demonstrated that both the MLR based on UAV-LiDAR data and a progress model of the 3-PG have a promising potential for estimating forest structural parameters ( R 2 > 0.70, relative root squared error >20%). A sensitivity analysis of the 3-PG parameters also confirmed that the parameter "age at canopy cover" (fullCanAge) is vital for the 3-PG model, and positively correlation with the simulated results. The method presented here represents an improvement on traditional methods for estimating forest structural parameters because it more explicitly accounts for climatic effects included in the 3-PG model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奥奥没有利饼干完成签到 ,获得积分10
1秒前
直率的菠萝完成签到 ,获得积分10
1秒前
2秒前
斯文幻天发布了新的文献求助10
2秒前
上课了完成签到,获得积分10
2秒前
dududu发布了新的文献求助10
2秒前
在水一方应助Ruby采纳,获得10
2秒前
时尚丹寒完成签到 ,获得积分10
3秒前
3秒前
jessica发布了新的文献求助10
3秒前
heart完成签到,获得积分10
3秒前
茶米发布了新的文献求助10
3秒前
3秒前
13379307178完成签到,获得积分10
4秒前
4秒前
4秒前
CY完成签到,获得积分10
4秒前
冬日暖阳完成签到,获得积分10
4秒前
SciGPT应助徐志豪采纳,获得10
4秒前
科研通AI6应助wzh采纳,获得10
5秒前
SciGPT应助Zzz采纳,获得10
5秒前
JIE发布了新的文献求助10
5秒前
5秒前
甜甜若冰发布了新的文献求助10
6秒前
6秒前
ban完成签到,获得积分10
6秒前
6秒前
小二郎应助all采纳,获得10
6秒前
7秒前
葡萄成熟时完成签到,获得积分10
7秒前
yan完成签到,获得积分10
7秒前
7秒前
CEJ发布了新的文献求助10
7秒前
8秒前
XB发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助30
8秒前
9秒前
柒玉染发布了新的文献求助10
9秒前
追寻的纸鹤完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928278
求助须知:如何正确求助?哪些是违规求助? 4197425
关于积分的说明 13038287
捐赠科研通 3970322
什么是DOI,文献DOI怎么找? 2175720
邀请新用户注册赠送积分活动 1192848
关于科研通互助平台的介绍 1103624