转移
乳腺癌
癌症研究
生物
磷蛋白
癌细胞
癌症
细胞生物学
细胞骨架
磷酸化
细胞
遗传学
作者
Binyan Lin,Yongxu Li,Tiepeng Wang,Yangmin Qiu,Zhenzhong Chen,Kai Zhao,Na Lu
出处
期刊:Oncogene
[Springer Nature]
日期:2020-08-10
卷期号:39 (37): 6024-6040
被引量:17
标识
DOI:10.1038/s41388-020-01412-x
摘要
Metastatic breast cancer is characterized by high mortality and limited therapeutic target. During tumor metastasis, cytoskeletal reorganization is one of the key steps in the migration and invasion of breast cancer cells. Collapsin response mediator protein 2 (CRMP2) is a cytosolic phosphoprotein that plays an important role in regulating cytoskeletal dynamics. Previous researches have reported that altered CRMP2 expression is associated with breast cancer progression, but the underlying mechanism remains poorly understood. Here, we show that CRMP2 expression is reduced in various subtypes of breast cancers and negatively correlated with lymphatic metastasis. Overexpression of CRMP2 significantly inhibits invasion and stemness in breast cancer cells, while downregulation of CRMP2 promotes cell invasion, which is not required for tubulin polymerization. Mechanistic studies demonstrate that CRMP2 interacts with RECK, prevents RECK degradation, which, in turn, blocks NF-κB and Wnt signaling pathways. Furthermore, we find that phosphorylation of CRMP2 at T514 and S522 remarkably abolishes its functions to bind with RECK and to inhibit cell invasion. Pharmacologic rescue of CRMP2 expression suppressed breast cancer metastasis in vitro and in vivo and stimulated a synergetic effect with FN-1501 that induces CRMP2 dephosphorylation. Collectively, this study highlights the potential of CRMP2 as a therapeutic target in breast cancer metastasis and reveals a distinct mechanism of CRMP2.
科研通智能强力驱动
Strongly Powered by AbleSci AI