Speckle noise reduction in digital holograms based on Spectral Convolutional Neural Networks (SCNN)

卷积神经网络 计算机科学 散斑噪声 人工智能 降噪 全息术 人工神经网络 噪音(视频) 数字全息术 还原(数学) 斑点图案 计算机视觉 光学 图像(数学) 物理 数学 几何学
作者
Wen-Jing Zhou,Shuai Zou,Deng-Ke He,Jing-Lu Hu,Hongbo Zhang,Yingjie Yu,Ting-Chung Poon
标识
DOI:10.1117/12.2537685
摘要

Digital holographic imaging systems are promising as they provide 3-D information of the object. However, the acquisition of holograms during experiments can be adversely affected by the speckle noise in coherent digital holographic systems. Several different denoising algorithms have been proposed. Traditional denoising algorithms average several holograms under different experimental conditions or use conventional filters to remove the speckle noise. However, these traditional methods require complex holographic experimental conditions. Besides time-consuming, the use of traditional neural networks has been difficult to extract speckle noise characteristics from holograms and the resulting holographic reconstructions have not been ideal. To address tradeoff between speckle noise reduction and efficiency, we analyze holograms in the spectrum domain for fast speckle noise reduction, which can remove multiple-levels speckle noise based on convolutional neural networks using only a single hologram. In order to effectively reduce the speckle noise associated with the hologram, the data set of the neural network training cannot use the current popular image data set. To achieve powerful noise reduction performance, neural networks use multiple-level speckle noise data sets for training. In contrast to existing traditional denoising algorithms, we use convolutional neural networks in spectral denoising for digital hologram. The proposed technique enjoys several desirable properties, including (i) the use of only a single hologram to efficiently handle various speckle noise levels, and (ii) faster speed than traditional approaches without sacrificing denoising performance. Experimental results and holographic reconstruction demonstrate the efficiency of our proposed neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
压缩完成签到 ,获得积分10
刚刚
treelet007完成签到,获得积分10
刚刚
拉长的秋白完成签到 ,获得积分10
1秒前
李点点完成签到,获得积分10
3秒前
CRANE完成签到 ,获得积分10
5秒前
学术小白发布了新的文献求助10
5秒前
阿庆发布了新的文献求助10
5秒前
8秒前
10秒前
zz完成签到 ,获得积分10
11秒前
12秒前
xijq发布了新的文献求助10
13秒前
14秒前
15秒前
ooopoii应助苹果念云采纳,获得10
18秒前
19秒前
WFLLL发布了新的文献求助10
20秒前
星禾吾完成签到,获得积分10
20秒前
罗胖胖完成签到 ,获得积分10
22秒前
爱学习的瑞瑞子完成签到 ,获得积分10
22秒前
meng发布了新的文献求助10
22秒前
22秒前
24秒前
和春住完成签到,获得积分10
24秒前
26秒前
26秒前
27秒前
激昂的沛柔完成签到,获得积分10
29秒前
小马甲应助xh采纳,获得10
31秒前
31秒前
wyg117发布了新的文献求助10
31秒前
完美世界应助端庄的以柳采纳,获得10
32秒前
zho发布了新的文献求助10
33秒前
Singularity应助asir_xw采纳,获得10
33秒前
34秒前
37秒前
TALE完成签到,获得积分10
38秒前
你是我的唯一完成签到 ,获得积分10
40秒前
42秒前
Hello应助xh采纳,获得10
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390