Deep learning for brain disorder diagnosis based on fMRI images

深度学习 人工智能 计算机科学 功能磁共振成像 卷积神经网络 过程(计算) 机器学习 神经影像学 神经科学 心理学 操作系统
作者
Wutao Yin,Longhai Li,Fang‐Xiang Wu
出处
期刊:Neurocomputing [Elsevier]
卷期号:469: 332-345 被引量:96
标识
DOI:10.1016/j.neucom.2020.05.113
摘要

In modern neuroscience and clinical study, neuroscientists and clinicians often use non-invasive imaging techniques to validate theories and computational models, observe brain activities and diagnose brain disorders. The functional Magnetic Resonance Imaging (fMRI) is one of the commonly-used imaging modalities that can be used to understand human brain mechanisms as well as the diagnosis and treatment of brain disorders. The advances in artificial intelligence and the emergence of deep learning techniques have shown promising results to better interpret fMRI data. Deep learning techniques have rapidly become the state of the art for analyzing fMRI data sets and resulted in performance improvements in diverse fMRI applications. Deep learning is normally presented as an end-to-end learning process and can alleviate feature engineering requirements and hence reduce domain knowledge requirements to some extent. Under the framework of deep learning, fMRI data can be considered as images, time series or images series. Hence, different deep learning models such as convolutional neural networks, recurrent neural network, or a combination of both, can be developed to process fMRI data for different tasks. In this review, we discussed the basics of deep learning methods and focused on its successful implementations for brain disorder diagnosis based on fMRI images. The goal is to provide a high-level overview of brain disorder diagnosis with fMRI images from the perspective of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQWQEQRQ完成签到,获得积分10
1秒前
又欠发布了新的文献求助10
2秒前
@斤斤计较发布了新的文献求助10
2秒前
dog完成签到,获得积分10
2秒前
知北游完成签到,获得积分10
2秒前
3秒前
hhh发布了新的文献求助10
3秒前
vv发布了新的文献求助10
3秒前
浮游应助无辜日记本采纳,获得10
3秒前
3秒前
5秒前
万能图书馆应助又欠采纳,获得10
6秒前
诗酒趁年华完成签到,获得积分20
7秒前
无花果应助失眠的小熊猫采纳,获得10
9秒前
9秒前
9秒前
vv完成签到,获得积分10
10秒前
wang发布了新的文献求助10
10秒前
666发布了新的文献求助10
10秒前
11秒前
noodlessss完成签到,获得积分10
11秒前
幸福的星星完成签到,获得积分10
11秒前
14秒前
14秒前
Hey完成签到 ,获得积分10
14秒前
yyyyqqq发布了新的文献求助10
16秒前
ggbond完成签到,获得积分20
17秒前
大胆的白卉完成签到 ,获得积分10
17秒前
liyuqi61148完成签到,获得积分10
18秒前
深情安青应助FFF采纳,获得10
19秒前
Jasper应助风中的尔曼采纳,获得10
20秒前
SciGPT应助迷路的煎蛋采纳,获得10
20秒前
胜男发布了新的文献求助10
20秒前
大聪明应助科研爱好者采纳,获得10
22秒前
Ernie完成签到 ,获得积分10
22秒前
Cc完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
诚心的大白菜真实的钥匙完成签到 ,获得积分10
26秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381046
求助须知:如何正确求助?哪些是违规求助? 4504603
关于积分的说明 14018795
捐赠科研通 4413741
什么是DOI,文献DOI怎么找? 2424407
邀请新用户注册赠送积分活动 1417393
关于科研通互助平台的介绍 1395141