An Automatic Recognition of Tooth- Marked Tongue Based on Tongue Region Detection and Tongue Landmark Detection via Deep Learning

舌头 地标 计算机科学 人工智能 判别式 模式识别(心理学) 深度学习 卷积神经网络 计算机视觉 语音识别 医学 病理
作者
Wenjun Tang,Yuan Gao,Lei Liu,Tingwei Xia,Li He,Song Zhang,Jinhong Guo,Weihong Li,Qiang Xu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 153470-153478 被引量:14
标识
DOI:10.1109/access.2020.3017725
摘要

The tooth-marked tongue refers to the tongue with the edge featured in jagged teeth marks, which is a significant indicator for reflecting the conditions of patients' internal organs in Traditional Chinese Medicine (TCM). From the perspective of computer vision, due to the small variance in the global region (original image) but the large variance in the local region (tongue region), especially in the differential region (tongue edge region around landmarks), the recognition of the tooth-marked tongue is a naturally fine-grained classification task. To address this challenging task, a two-stage method based on tongue region detection and tongue landmark detection via deep learning is proposed in this paper. In the first stage, we introduce a cascaded convolutional neural network to detect the tongue region and tongue landmarks simultaneously for minimizing the redundancy information and maximizing discriminative information explicitly. In the second stage, we send not only the detected tongue region but also the detected tongue landmarks to a fine-grained classification network for the final recognition. Conclusively, our method is highly consistent with human perception. Moreover, to the best of our knowledge, we are the first attempt to manage the tooth-marked tongue recognition via deep learning. We conducted extensive experiments with the proposed method. The experimental results demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助vanHaren采纳,获得10
2秒前
岁末完成签到 ,获得积分10
4秒前
今后应助浩二采纳,获得10
5秒前
金桔儿发布了新的文献求助10
6秒前
赘婿应助执着乐双采纳,获得30
6秒前
Felix完成签到,获得积分10
11秒前
乐乐应助dasfdufos采纳,获得10
11秒前
15秒前
15秒前
Maxine完成签到 ,获得积分10
17秒前
Akim应助金桔儿采纳,获得10
17秒前
18秒前
19秒前
阿梅梅梅发布了新的文献求助10
19秒前
Vi完成签到,获得积分10
20秒前
123123发布了新的文献求助10
20秒前
21秒前
Asteria完成签到,获得积分10
21秒前
共行发布了新的文献求助10
22秒前
22秒前
研友_LpQGjn完成签到 ,获得积分10
24秒前
24秒前
西西2完成签到 ,获得积分10
25秒前
小菜鸡完成签到 ,获得积分10
25秒前
Ava应助清新的音响采纳,获得10
26秒前
柔之发布了新的文献求助10
26秒前
TIGun发布了新的文献求助10
29秒前
30秒前
30秒前
领导范儿应助123123采纳,获得10
31秒前
32秒前
32秒前
33秒前
BOB发布了新的文献求助10
37秒前
豌豆发布了新的文献求助10
38秒前
sunshine发布了新的文献求助10
38秒前
38秒前
39秒前
大个应助豌豆采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366