Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis

计算机科学 人工智能 基本事实 模式识别(心理学) 机器学习 深度学习 特征(语言学) 语言学 哲学
作者
Richard J. Chen,Ming Y. Lu,Jingwen Wang,Drew F. K. Williamson,Scott J. Rodig,Neal I. Lindeman,Faisal Mahmood
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 757-770 被引量:433
标识
DOI:10.1109/tmi.2020.3021387
摘要

Cancer diagnosis, prognosis, mymargin and therapeutic response predictions are based on morphological information from histology slides and molecular profiles from genomic data. However, most deep learning-based objective outcome prediction and grading paradigms are based on histology or genomics alone and do not make use of the complementary information in an intuitive manner. In this work, we propose Pathomic Fusion, an interpretable strategy for end-to-end multimodal fusion of histology image and genomic (mutations, CNV, RNA-Seq) features for survival outcome prediction. Our approach models pairwise feature interactions across modalities by taking the Kronecker product of unimodal feature representations, and controls the expressiveness of each representation via a gating-based attention mechanism. Following supervised learning, we are able to interpret and saliently localize features across each modality, and understand how feature importance shifts when conditioning on multimodal input. We validate our approach using glioma and clear cell renal cell carcinoma datasets from the Cancer Genome Atlas (TCGA), which contains paired whole-slide image, genotype, and transcriptome data with ground truth survival and histologic grade labels. In a 15-fold cross-validation, our results demonstrate that the proposed multimodal fusion paradigm improves prognostic determinations from ground truth grading and molecular subtyping, as well as unimodal deep networks trained on histology and genomic data alone. The proposed method establishes insight and theory on how to train deep networks on multimodal biomedical data in an intuitive manner, which will be useful for other problems in medicine that seek to combine heterogeneous data streams for understanding diseases and predicting response and resistance to treatment. Code and trained models are made available at: https://github.com/mahmoodlab/PathomicFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助MMMMM采纳,获得10
刚刚
科研通AI6应助nana采纳,获得10
1秒前
Ava应助DrWang采纳,获得10
1秒前
77发布了新的文献求助10
1秒前
风趣纸鹤发布了新的文献求助30
3秒前
JiangYifan发布了新的文献求助10
3秒前
4秒前
很难过发布了新的文献求助10
4秒前
ruru发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
yl发布了新的文献求助10
9秒前
田様应助rp采纳,获得10
9秒前
9秒前
limuzhi发布了新的文献求助10
9秒前
10秒前
Afterglow发布了新的文献求助10
10秒前
Shawn完成签到,获得积分10
13秒前
Jasper应助坚定的老六采纳,获得10
13秒前
YHY发布了新的文献求助10
13秒前
完美世界应助林林总总采纳,获得10
13秒前
LSH970829发布了新的文献求助10
13秒前
13秒前
kylin完成签到,获得积分10
14秒前
14秒前
大脸喵发布了新的文献求助10
14秒前
15秒前
16秒前
爱听歌土豆完成签到,获得积分10
16秒前
冷不丁梆梆就毕业应助小Z采纳,获得10
17秒前
一个西藏完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
所所应助77采纳,获得10
18秒前
天天快乐应助77采纳,获得10
18秒前
18秒前
19秒前
byonddsar完成签到,获得积分10
19秒前
酱婶发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626224
求助须知:如何正确求助?哪些是违规求助? 4712038
关于积分的说明 14957777
捐赠科研通 4781037
什么是DOI,文献DOI怎么找? 2554185
邀请新用户注册赠送积分活动 1515948
关于科研通互助平台的介绍 1476219