Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale

环境科学 遥感 中分辨率成像光谱仪 土地覆盖 归一化差异植被指数 含水量 数据同化 植被(病理学) 图像分辨率 卫星 叶面积指数 气象学 土地利用 地质学 地理 计算机科学 岩土工程 医学 土木工程 病理 工程类 航空航天工程 生态学 人工智能 生物
作者
Ahmed Samir Abowarda,Liangliang Bai,Caijin Zhang,Di Long,Xueying Li,Qi Huang,Zhangli Sun
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:255: 112301-112301 被引量:198
标识
DOI:10.1016/j.rse.2021.112301
摘要

Soil moisture has a considerable impact on the hydrological cycle, runoff generation, drought development, and water resources management. Soil moisture products provided by passive microwave remote sensing possess coarse spatial resolutions ranging from 25 to 50 km, unable to reflect large spatial heterogeneity in soil moisture caused by complex interactions among meteorological forcing, land cover, and topography. Meanwhile, active microwave remote sensing can provide higher spatial resolution than passive sensors that may reach 1 km but with lower temporal resolution of 6–12 days (e.g., Sentinel-1). Better water resources management, particularly for the agricultural sector, requires spatiotemporally continuous soil moisture estimates at the field scale (e.g., 30 m × 30 m) to reflect its high spatiotemporal variability across heterogeneous land surfaces. In this study, both data fusion and random forest models along with a range of remote sensing, reanalysis, and in situ data were jointly used to generate spatiotemporally continuous surface soil moisture (SSM) at 30 m × 30 m. First, both daily normalized difference vegetation index (NDVI) and surface albedo at 30 m × 30 m were generated by fusing reflectance products of the MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat. Second, China Meteorological Administration Land Data Assimilation System (CLDAS, 0.0625° × 0.0625°) land surface temperature (LST) was fused with both MODIS LST and Landsat LST to generate spatially complete LST maps (at 11 a.m. local solar time for each day) at 30 m × 30 m. Last, random forest models were developed to generate spatiotemporally continuous SSM of 30 m × 30 m using the fused variables at fine spatial resolution (e.g., NDVI, surface albedo, and LST), SSM background fields, and ancillary variables such as precipitation and soil texture as the model inputs. Compared with original SSM of the European Space Agency (ESA) Climate Change Initiative (CCI) Version 4.4 SSM, Soil Moisture Active Passive (SMAP) Level-4 SSM, and CLDAS SSM, the downscaled SSM using these products as background fields was improved significantly in terms of accuracy and spatial distribution. Moreover, the integration of multiple SSM background fields improved the performance of the downscaled SSM significantly in terms of spatiotemporal consistency and accuracy compared with that using a single SSM background field. Overall, the downscaled SMAP_L4 + CLDAS SSM showed the best performance at four sites (i.e., Weishan, Huailai, Hujiatan, and Paihuai) out of seven sites on the North China Plain with R, bias, MAE, RMSE, and ubRMSE ranging from 0.70–0.84, −0.034–0.012 cm3/cm3, 0.025–0.044 cm3/cm3, 0.031–0.050 cm3/cm3, and 0.022–0.042 cm3/cm3, respectively. The proposed framework maximizes the potential of data fusion, random forest models, and in situ data in deriving spatiotemporally continuous SSM estimates at 30 m × 30 m, which should be valuable for water resources management at the field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的小海豚完成签到,获得积分10
1秒前
狮子座发布了新的文献求助10
7秒前
复杂真完成签到,获得积分10
9秒前
alixy完成签到,获得积分10
11秒前
小白鞋完成签到 ,获得积分10
13秒前
苏一完成签到,获得积分10
13秒前
嘟嘟完成签到 ,获得积分10
13秒前
ahh完成签到 ,获得积分10
14秒前
14秒前
睡觉王完成签到 ,获得积分10
16秒前
王忘汪完成签到 ,获得积分10
18秒前
18秒前
bkagyin应助陈晓迪1992采纳,获得30
20秒前
量子星尘发布了新的文献求助10
21秒前
黑眼圈完成签到 ,获得积分10
22秒前
22秒前
yeluoyezhi完成签到,获得积分10
23秒前
荆轲刺秦王完成签到 ,获得积分10
24秒前
微雨若,,完成签到 ,获得积分10
25秒前
俏皮元珊完成签到 ,获得积分10
26秒前
tangyangzju发布了新的文献求助10
26秒前
马超放烟花完成签到 ,获得积分10
33秒前
nianshu完成签到 ,获得积分10
37秒前
tangyangzju完成签到,获得积分10
39秒前
fusheng完成签到 ,获得积分10
40秒前
lilili完成签到,获得积分10
41秒前
gincle完成签到 ,获得积分10
43秒前
浮生完成签到 ,获得积分10
44秒前
45秒前
46秒前
量子星尘发布了新的文献求助10
47秒前
陈晓迪1992发布了新的文献求助30
48秒前
xr完成签到 ,获得积分10
49秒前
Ashley完成签到 ,获得积分10
49秒前
50秒前
大金鱼完成签到 ,获得积分10
52秒前
Summer发布了新的文献求助10
52秒前
CO2完成签到,获得积分10
1分钟前
涂涂完成签到 ,获得积分10
1分钟前
rio完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868049
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667126
捐赠科研通 3134538
什么是DOI,文献DOI怎么找? 1729156
邀请新用户注册赠送积分活动 833189
科研通“疑难数据库(出版商)”最低求助积分说明 780620