Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale

环境科学 遥感 中分辨率成像光谱仪 土地覆盖 归一化差异植被指数 含水量 数据同化 植被(病理学) 图像分辨率 卫星 叶面积指数 气象学 土地利用 地质学 地理 计算机科学 岩土工程 医学 土木工程 病理 工程类 航空航天工程 生态学 人工智能 生物
作者
Ahmed Samir Abowarda,Liangliang Bai,Caijin Zhang,Di Long,Xueying Li,Qi Huang,Zhangli Sun
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112301-112301 被引量:223
标识
DOI:10.1016/j.rse.2021.112301
摘要

Soil moisture has a considerable impact on the hydrological cycle, runoff generation, drought development, and water resources management. Soil moisture products provided by passive microwave remote sensing possess coarse spatial resolutions ranging from 25 to 50 km, unable to reflect large spatial heterogeneity in soil moisture caused by complex interactions among meteorological forcing, land cover, and topography. Meanwhile, active microwave remote sensing can provide higher spatial resolution than passive sensors that may reach 1 km but with lower temporal resolution of 6–12 days (e.g., Sentinel-1). Better water resources management, particularly for the agricultural sector, requires spatiotemporally continuous soil moisture estimates at the field scale (e.g., 30 m × 30 m) to reflect its high spatiotemporal variability across heterogeneous land surfaces. In this study, both data fusion and random forest models along with a range of remote sensing, reanalysis, and in situ data were jointly used to generate spatiotemporally continuous surface soil moisture (SSM) at 30 m × 30 m. First, both daily normalized difference vegetation index (NDVI) and surface albedo at 30 m × 30 m were generated by fusing reflectance products of the MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat. Second, China Meteorological Administration Land Data Assimilation System (CLDAS, 0.0625° × 0.0625°) land surface temperature (LST) was fused with both MODIS LST and Landsat LST to generate spatially complete LST maps (at 11 a.m. local solar time for each day) at 30 m × 30 m. Last, random forest models were developed to generate spatiotemporally continuous SSM of 30 m × 30 m using the fused variables at fine spatial resolution (e.g., NDVI, surface albedo, and LST), SSM background fields, and ancillary variables such as precipitation and soil texture as the model inputs. Compared with original SSM of the European Space Agency (ESA) Climate Change Initiative (CCI) Version 4.4 SSM, Soil Moisture Active Passive (SMAP) Level-4 SSM, and CLDAS SSM, the downscaled SSM using these products as background fields was improved significantly in terms of accuracy and spatial distribution. Moreover, the integration of multiple SSM background fields improved the performance of the downscaled SSM significantly in terms of spatiotemporal consistency and accuracy compared with that using a single SSM background field. Overall, the downscaled SMAP_L4 + CLDAS SSM showed the best performance at four sites (i.e., Weishan, Huailai, Hujiatan, and Paihuai) out of seven sites on the North China Plain with R, bias, MAE, RMSE, and ubRMSE ranging from 0.70–0.84, −0.034–0.012 cm3/cm3, 0.025–0.044 cm3/cm3, 0.031–0.050 cm3/cm3, and 0.022–0.042 cm3/cm3, respectively. The proposed framework maximizes the potential of data fusion, random forest models, and in situ data in deriving spatiotemporally continuous SSM estimates at 30 m × 30 m, which should be valuable for water resources management at the field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
xiaojiezhang发布了新的文献求助10
1秒前
2秒前
1Yer6完成签到 ,获得积分10
2秒前
3秒前
震速流完成签到 ,获得积分10
3秒前
4秒前
hilm应助Iridesent0v0采纳,获得10
6秒前
7秒前
丘丘发布了新的文献求助10
7秒前
丫丫发布了新的文献求助10
8秒前
8秒前
11秒前
FashionBoy应助清新采纳,获得10
11秒前
11秒前
12秒前
zzcres完成签到,获得积分10
13秒前
14秒前
不配.应助柚子茶采纳,获得150
14秒前
15秒前
pp完成签到,获得积分10
15秒前
耳喃发布了新的文献求助10
16秒前
所所应助风信子采纳,获得10
16秒前
天真的初蓝完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
徐萌完成签到 ,获得积分10
19秒前
shiyi完成签到,获得积分10
20秒前
善学以致用应助天真大神采纳,获得10
20秒前
Ava应助灵巧鹤采纳,获得10
21秒前
23秒前
清新发布了新的文献求助10
23秒前
直率飞柏发布了新的文献求助10
24秒前
肚子好e啊完成签到 ,获得积分10
24秒前
Kent完成签到 ,获得积分10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474