Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules

化学 蛋白质配体 受体 配体(生物化学) 立体化学 小分子
作者
Jiansheng Wu,Yi Sun,Wallace K.B. Chan,Yanxiang Zhu,Wenyong Zhu,Huang Wanqing,Haifeng Hu,Shancheng Yan,Tao Pang,Xiaoyan Ke,Fei Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (3): 1865-1875 被引量:2
标识
DOI:10.1021/acs.jcim.9b01000
摘要

G protein-coupled receptors (GPCRs) are one of the most important drug targets, accounting for ∼34% of drugs on the market. For drug discovery, accurate modeling and explanation of bioactivities of ligands is critical for the screening and optimization of hit compounds. Homologous GPCRs are more likely to interact with chemically similar ligands, and they tend to share common binding modes with ligand molecules. The inclusion of homologous GPCRs in learning bioactivities of ligands potentially enhances the accuracy and interpretability of models due to utilizing increased training sample size and the existence of common ligand substructures that control bioactivities. Accurate modeling and interpretation of bioactivities of ligands by combining homologous GPCRs can be formulated as multitask learning with joint feature learning problem and naturally matched with the group lasso learning algorithm. Thus, we proposed a multitask regression learning with group lasso (MTR-GL) implemented by l2,1-norm regularization to model bioactivities of ligand molecules and then tested the algorithm on a series of thirty-five representative GPCRs datasets that cover nine subfamilies of human GPCRs. The results show that MTR-GL is overall superior to single-task learning methods and classic multitask learning with joint feature learning methods. Moreover, MTR-GL achieves better performance than state-of-the-art deep multitask learning based methods of predicting ligand bioactivities on most datasets (31/35), where MTR-GL obtained an average improvement of 38% on correlation coefficient (r2) and 29% on root-mean-square error over the DeepNeuralNet-QSAR predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
1秒前
李健的小迷弟应助-Me采纳,获得10
3秒前
3秒前
3秒前
俊秀的丹翠完成签到,获得积分10
3秒前
zhangzhisenn发布了新的文献求助10
4秒前
4秒前
caimiemie发布了新的文献求助10
4秒前
臭小子发布了新的文献求助10
4秒前
小苹果发布了新的文献求助10
5秒前
科目三应助一一一采纳,获得10
5秒前
Vvvnnnaa1完成签到,获得积分10
5秒前
6秒前
6秒前
烟花应助路明非采纳,获得10
6秒前
灵感大王喵完成签到 ,获得积分10
6秒前
小惠惠完成签到,获得积分10
7秒前
7秒前
大狒狒发布了新的文献求助30
8秒前
ddddddd发布了新的文献求助30
8秒前
8秒前
科研通AI5应助LJR采纳,获得10
9秒前
9秒前
9秒前
land发布了新的文献求助10
9秒前
9秒前
七七完成签到,获得积分10
9秒前
zw完成签到,获得积分10
9秒前
ccj发布了新的文献求助10
10秒前
小苹果完成签到,获得积分10
11秒前
12秒前
甜蜜傲晴完成签到,获得积分10
12秒前
烟花应助整齐的豆芽采纳,获得10
13秒前
王妍发布了新的文献求助10
13秒前
13秒前
深情安青应助天真的乌采纳,获得10
14秒前
14秒前
14秒前
asdfgh发布了新的文献求助10
14秒前
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821306
求助须知:如何正确求助?哪些是违规求助? 3364005
关于积分的说明 10426992
捐赠科研通 3082521
什么是DOI,文献DOI怎么找? 1695671
邀请新用户注册赠送积分活动 815216
科研通“疑难数据库(出版商)”最低求助积分说明 769050