Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces

脑-机接口 计算机科学 会话(web分析) 运动表象 分类器(UML) 人工智能 机器学习 适应(眼睛) 概念漂移 感觉运动节律 脑电图 数据流挖掘 精神科 光学 物理 万维网 心理学
作者
Carmen Vidaurre,Claudia Sannelli,Klaus‐Robert Müller,Benjamin Blankertz
出处
期刊:Neural Computation [The MIT Press]
卷期号:23 (3): 791-816 被引量:196
标识
DOI:10.1162/neco_a_00089
摘要

Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a nonnegligible portion of participants (estimated 15%-30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user. It starts with a subject-independent classifier that evolves to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features' drift during the session and provide an unbiased measure of BCI performance. Using this approach, without any offline calibration, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向雅完成签到,获得积分10
1秒前
Maglev发布了新的文献求助30
3秒前
4秒前
舒服的灵安完成签到 ,获得积分10
4秒前
月亮之下完成签到 ,获得积分10
6秒前
RRR发布了新的文献求助10
8秒前
8秒前
Wonder完成签到,获得积分10
8秒前
M_liya完成签到 ,获得积分10
8秒前
Hello应助可乐味橘子采纳,获得10
10秒前
solo4bird完成签到,获得积分10
11秒前
笨笨芯发布了新的文献求助50
11秒前
哈哈哈完成签到,获得积分10
11秒前
小梦完成签到,获得积分10
12秒前
keyan完成签到,获得积分10
13秒前
Xltox完成签到,获得积分10
14秒前
知行完成签到,获得积分10
15秒前
15秒前
火火火木完成签到 ,获得积分10
16秒前
所所应助笨笨芯采纳,获得10
18秒前
青菜完成签到,获得积分10
19秒前
秀丽的小懒虫完成签到,获得积分10
20秒前
21秒前
logan完成签到,获得积分10
21秒前
zss完成签到 ,获得积分10
23秒前
小橘子完成签到 ,获得积分10
24秒前
杨。。完成签到 ,获得积分10
24秒前
小张在进步完成签到,获得积分10
27秒前
27秒前
研友_La17wL完成签到,获得积分10
27秒前
pumpkin完成签到,获得积分10
28秒前
Maglev完成签到,获得积分10
28秒前
李雪松完成签到 ,获得积分10
28秒前
29秒前
星星又累完成签到,获得积分10
31秒前
RayLam完成签到,获得积分10
31秒前
娟娟完成签到 ,获得积分10
31秒前
pumpkin发布了新的文献求助10
31秒前
淡然的奎完成签到,获得积分10
32秒前
匆匆赶路人完成签到 ,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313