Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes

晶界 电解质 快离子导体 钙钛矿(结构) 材料科学 离子电导率 电导率 离子键合 原子单位 离子 化学物理 结晶学 化学 冶金 微观结构 物理化学 物理 电极 有机化学 量子力学
作者
Cheng Ma,Kai Chen,Chengdu Liang,Nan Chen,Ryo Ishikawa,Karren L. More,Miaofang Chi
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:7 (5): 1638-1638 被引量:220
标识
DOI:10.1039/c4ee00382a
摘要

Li-ion-conducting solid electrolytes are the potential solution to the severe safety issues that occur with conventional batteries based on solvent-based electrolytes. The ionic conductivity of solid electrolytes is in general too low, however, due to a high grain-boundary (GB) resistance. A thorough understanding of the ionic transport mechanism at GBs in these materials is critical for a revolutionary development of next-generation Li batteries. Herein we present the first atomic-scale study to reveal the origin of the large GB resistance; (Li3xLa2/3−x)TiO3 was chosen as a prototype material to demonstrate the concept. A strikingly severe structural and chemical deviation of about 2–3 unit cells thick was revealed at the grain boundaries. Instead of preserving the ABO3 perovskite framework, such GBs were shown to consist of a binary Ti–O compound, which prohibits the abundance and transport of the charge carrier Li+. This observation has led to a potential strategy for tailoring the grain boundary structures. This study points out, for the first time, the importance of the atomic-scale grain-boundary modification to the macroscopic Li+ conductivity. Such a discovery paves the way for the search and design of solid electrolytes with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zima_a完成签到,获得积分10
2秒前
3秒前
完美世界应助Demon采纳,获得10
3秒前
围城烟火应助兰闹儿采纳,获得10
3秒前
4秒前
4秒前
ebingo13完成签到,获得积分10
4秒前
cheling完成签到,获得积分10
4秒前
5秒前
Chara_kara发布了新的文献求助10
7秒前
8秒前
所所应助潇潇雨歇采纳,获得10
8秒前
melo完成签到,获得积分20
8秒前
jc哥关注了科研通微信公众号
9秒前
9秒前
10秒前
10秒前
10秒前
CipherSage应助现代元枫采纳,获得10
11秒前
13秒前
打打应助canwu采纳,获得30
14秒前
满意的丹蝶关注了科研通微信公众号
15秒前
天丶灵灵完成签到,获得积分10
15秒前
初晴应助Ld采纳,获得10
15秒前
李健的小迷弟应助Ld采纳,获得10
15秒前
hehe完成签到 ,获得积分10
15秒前
Jasper应助车代桃采纳,获得10
16秒前
Chara_kara完成签到,获得积分10
16秒前
苹果完成签到,获得积分10
17秒前
赘婿应助小菜鸡采纳,获得10
17秒前
斯文代梅完成签到,获得积分10
18秒前
初晴应助小小少年采纳,获得20
18秒前
独步出营完成签到 ,获得积分10
18秒前
CodeCraft应助尉迟苑博采纳,获得10
18秒前
Chara_kara发布了新的文献求助10
19秒前
20秒前
领导范儿应助KrisTina采纳,获得10
20秒前
紫金大萝卜应助11采纳,获得20
23秒前
地丶灵灵完成签到,获得积分10
23秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2383633
求助须知:如何正确求助?哪些是违规求助? 2090463
关于积分的说明 5255372
捐赠科研通 1817637
什么是DOI,文献DOI怎么找? 906680
版权声明 559045
科研通“疑难数据库(出版商)”最低求助积分说明 484103