Flat optics with designer metasurfaces

光学 波前 全息术 极化(电化学) 波长 超材料 谐振器 光电子学 物理 材料科学 物理化学 化学
作者
Nanfang Yu,Federico Capasso
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:13 (2): 139-150 被引量:5119
标识
DOI:10.1038/nmat3839
摘要

Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
67完成签到 ,获得积分10
刚刚
1秒前
figure完成签到 ,获得积分10
1秒前
二重音发布了新的文献求助10
3秒前
李健应助小四喜采纳,获得10
4秒前
明理萃完成签到 ,获得积分10
4秒前
7秒前
8秒前
慕青应助勤奋的夏蓉采纳,获得10
8秒前
吴钰哲完成签到,获得积分10
12秒前
jbtjht发布了新的文献求助10
12秒前
轻松的鑫发布了新的文献求助10
13秒前
彭瞻完成签到 ,获得积分10
14秒前
周周完成签到,获得积分20
14秒前
hzhniubility完成签到,获得积分10
15秒前
15秒前
二重音完成签到,获得积分10
16秒前
17秒前
20秒前
烂漫之槐发布了新的文献求助10
21秒前
3237924531完成签到,获得积分10
22秒前
科研通AI5应助Hi_aloha采纳,获得10
22秒前
桐桐应助馅饼采纳,获得200
22秒前
可爱败发布了新的文献求助10
24秒前
思源应助麻生采纳,获得10
26秒前
茗姜发布了新的文献求助10
28秒前
iceink发布了新的文献求助200
28秒前
29秒前
杭浩然完成签到,获得积分10
30秒前
32秒前
fzh1234发布了新的文献求助10
34秒前
38秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
我是老大应助科研通管家采纳,获得10
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
SciGPT应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
上官若男应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
打打应助科研通管家采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751